
RESEARCH ARTICLE Open Access

Risk factors associated with exposure to
bovine respiratory disease pathogens
during the peri-weaning period in dairy
bull calves
Gerard M. Murray1*, Simon J. More2, Tracy A. Clegg2, Bernadette Earley3, Rónan G. O’Neill4, Dayle Johnston3,
John Gilmore5, Mikhail Nosov5, Máire C. McElroy4, Thomas J. Inzana6 and Joseph P. Cassidy7

Abstract

Background: Bovine respiratory disease (BRD) remains among the leading causes of death of cattle internationally.
The objective of this study was to identify risk factors associated with exposure to BRD pathogens during the
peri-weaning period (day (d)-14 to d 14 relative to weaning at 0) in dairy bull calves using serological responses to
these pathogens as surrogate markers of exposure.
Clinically normal Holstein-Friesian and Jersey breed bull calves (n = 72) were group housed in 4 pens using a
factorial design with calves of different breeds and planes of nutrition in each pen. Intrinsic, management and
clinical data were collected during the pre-weaning (d − 56 to d − 14) period. Calves were gradually weaned over
14 days (d − 14 to d 0). Serological analysis for antibodies against key BRD pathogens (BRSV, BPI3V, BHV-1, BHV-4,
BCoV, BVDV and H. somni) was undertaken at d − 14 and d 14. Linear regression models (for BVDV, BPI3V, BHV-1,
BHV-4, BCoV and H. somni) and a single mixed effect random variable model (for BRSV) were used to identify risk
factors for changes in antibody levels to these pathogens.

Results: BRSV was the only pathogen which demonstrated clustering by pen. Jersey calves experienced significantly
lower changes in BVDV S/P than Holstein-Friesian calves. Animals with a high maximum respiratory score (≥8) recorded
significant increases in H. somni S/P during the peri-weaning period when compared to those with respiratory scores
of ≤3.
Haptoglobin levels of between 1.32 and 1.60 mg/ml at d − 14 were significantly associated with decreases in BHV-1
S/N during the peri-weaning period. Higher BVDV S/P ratios at d − 14 were significantly correlated with increased
changes in serological responses to BHV-4 over the peri-weaning period.

Conclusions: Haptoglobin may have potential as a predictor of exposure to BHV-1. BRSV would appear to play a more
significant role at the ‘group’ rather than ‘individual animal’ level. The significant associations between the pre-weaning
levels of antibodies to certain BRD pathogens and changes in the levels of antibodies to the various pathogens during
the peri-weaning period may reflect a cohort of possibly genetically linked ‘better responders’ among the study
population.
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Background
Bovine respiratory disease (BRD) remains among the
leading causes of death of dairy and beef cattle of all
ages in Ireland [1] and internationally [2]. Dairy calf
pneumonia (enzootic calf pneumonia) represents an epi-
demiologically distinct component of the BRD complex,
typically affecting 2 to 6 month old calves; shipping fever
of feedlot cattle and atypical interstitial pneumonia are
other recognised syndromes [3].
While indoor or outdoor individual housing of calves

has been recognised as beneficial to dairy calf health [4]
legislative changes in animal welfare in Ireland and
Europe (EU Directive 91/629/EC and EU Decision 97/
182/EC) have encouraged group housing of calves,
which also facilitates more efficient use of labour and
space. However, this shift has presented the dairy indus-
try with new challenges in disease control [5] and in-
creased the risk of BRD among young dairy calves [6–8].
Stress is an important co-factor in the pathogenesis of

BRD [9, 10]. Clinically affected calves shedding large
numbers of pathogens into the environment act as an
important source of exposure for other calves. In
addition, BRD pathogens can also be carried and shed
by apparently healthy animals [11, 12]. Weaning has
been traditionally recognised as a stressful time for
calves with both nutritional and non-nutritional factors
contributing to weaning distress [13]. Non-nutritional
factors such as the breaking of the maternal bond and
the rearrangement of the social group tend to be critical
factors for beef suckled calves in particular. As dairy
calves are generally separated from the dam shortly after
birth, weaning distress in the dairy calf typically arises
predominantly from nutritional factors [14]. When
coupled with the increased interaction and contact of
calves in group housing, weaning distress can facilitate
the efficient spread of BRD pathogens leading to exposure
and, potentially, disease. Inevitably there are interactions
and cross-effects between pathogens which together lead
to variable and complex immunological and pathological
effects in each calf.
Many studies have examined the effects of intrinsic

[15], management [16, 17] or clinical [18] risk factors for
BRD; however, reports as to the various potential risks
these variables pose in exposing calves to BRD patho-
gens are lacking. The objective of this study was to iden-
tify risk factors associated with exposure to BRD
pathogens during the peri-weaning period in dairy bull
calves using serological responses to these pathogens as
surrogate markers of exposure. These responses were
determined by calculating changes in sample to positive
ratios (S/P), percentage positivity (PP) or sample to
negative ratios (S/N), to a wide range of recognised BRD
pathogens during the peri-weaning period (day (d) -14
to d 14 relative to weaning at d 0).

Methods
Animal management
This study was conducted as part of a larger study
designed to examine changes in haematological profiles
and gene expression in response to gradual weaning.
Ethical approval for this study was sought, and received,
from the Teagasc Animal Ethics Committee. Animal
management, sample collection and haematological
analysis have been outlined previously by Johnston et al.
[14]. Briefly, 72 clinically normal bull calves of Jersey or
Holstein-Friesian breed were sourced from 2 preferential
supplier farms at a mean age of 19 (S.D. 8) days and
were group housed indoors in 4 sawdust-floored pens
(16, 18, 18 and 20 per pen) from d − 56 (relative to
weaning (d 0)) to d 28 of the study. A sample size calcu-
lation for linear regression based on a power level of 0.8,
significance level of 0.05 and a range of anticipated
effects and numbers of predictors suggested a minimum
sample range of 59 to 65 animals. Calves were immu-
nised on arrival against bovine herpesvirus 1 (BHV-1;
Rispoval IBR Marker Live administered intramuscularly,
Zoetis), and, using a combined vaccine (Bovilis Bovipast
RSP, MSD, inactivated vaccine administered subcutane-
ously), they were also immunised against bovine para-
influenza 3 virus (BPI3V), bovine respiratory syncytial
virus (BRSV), and Mannheimia haemolytica serotypes
A1 and A6. A single combined booster dose against
BRSV, BPI3V and Mannheimia haemolytica was admin-
istered 4 weeks later. Vaccination against Salmonella
Dublin and Salmonella Typhimurium (Bovivac S, inacti-
vated vaccine administered subcutaneously) was also
administered on arrival. The vaccination status of the
dams was not available. The study was structured as a
factorial design with two breeds (Holstein-Friesian and
Jersey), and three planes of nutrition (high (H), medium
(M) and low (L)) within each breed and calves were
stratified to a nutrition treatment within each breed, on
the basis of live-weight, age at the first day of the study
(d − 56) and sire [14]. Each pen contained calves of each
breed and each plane of nutrition and calves were fed
using automatic milk (Vario Powder; Förster-Technik
GmbH, Engen, Germany) and concentrate (KFA3-MA3;
Förster-Technik GmbH) feeders. All calves were offered
approximately 400 g straw daily, from a rack within the
group pen during the peri-weaning period. During the
pre-weaning period (d-56 to d-14), Holstein-Friesian
calves on the H, M and L planes of nutrition were of-
fered 1.2 kg milk replacer (8 l at 150 g/l) with ad libitum
concentrate, 0.8 kg milk replacer (6 l at 133.33 g/l) with
a maximum of 1.5 kg concentrate and 0.5 kg milk
replacer (4 l at 125 g/l) with a maximum of 1 kg concen-
trate, daily, respectively. The Jersey calves on the H, M
and L planes of nutrition were offered 0.8 kg milk replacer
(6 l at 133.33 g/l) with ad libitum concentrate, 0.5 kg milk
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replacer (4 l at 125 g/l) with a maximum of 1.5 kg concen-
trate and 0.35 kg milk replacer (3.5 l at 100 g/l) with a
maximum of 1 kg concentrate, daily, respectively. During
the weaning phase (d-14 to d0), daily milk replacer was
gradually reduced and by d − 1, all calves had been con-
suming at least 1 kg of concentrate per day for 3 consecu-
tive days. On d 0, milk replacer was eliminated from the
diet of all calves.
Animals were maintained on different planes of nutri-

tion which were devised for each breed using National
Research Council guidelines [19] to achieve a target
growth rate of ⩾1.0, 0.7 and < 0.5 kg/day, for Holstein-
Friesian breed calves on the H, M and L planes of nutri-
tion and a target growth rate of 0.7, 0.5 and ⩽0.3 kg/day,
for Jersey breed calves on the H, M and L planes of
nutrition, respectively [14].

Clinical assessment
Clinical assessments were carried out on all calves
twice weekly during the pre-weaning and weaning pe-
riods (d − 56 to d 0). A modified version of the
Wisconsin health scoring criteria was used to score
clinical criteria [20]. A cumulative respiratory score
(0–12) was devised from nasal discharge (0–3), eye
(0–3) or ear (0–3) score (whichever was greatest),
cough index (0–3) and rectal temperature based on
the method described by Lago et al. [21]; the max-
imum respiratory score achieved by each calf between
d − 56 and d − 14 was recorded.

Sampling
Blood samples were collected from all calves on arrival,
and on d − 14 and d 14 relative to weaning (d 0), via jugu-
lar venipuncture. Serum was harvested and samples were
stored at − 20 °C pending analysis. Blood samples were
also collected in 6 ml K3 Ethylenediaminetetraacetic acid

(K3EDTA) tubes (Vacuette; Cruinn Diagnostics, Dublin,
Ireland) and in 9 ml Lithium Heparin (LH) tubes (Vacu-
ette; Cruinn Diagnostics) on d − 14 and d 14 relative to
weaning (d 0) for haematological analysis and to deter-
mine the concentration of the acute phase protein, hapto-
globin respectively. LH blood samples were centrifuged at
4 °C (1600×g for 15 min) and the plasma was harvested
and stored at − 20 °C until analysed.

Serological testing
The K3EDTA blood samples were analysed immediately
after collection using an ADVIA 2120 analyser (AV
ADVIA 2120; Bayer Healthcare, Siemens, UK), contain-
ing software necessary for the analysis of bovine blood
as described by Johnston et al. [14]. Zinc sulphate
turbidity (ZST) test analysis was carried out at 520 nm
using a spectrophotometer [22]. The haptoglobin con-
centration was measured using an automatic analyser
(Olympus AU 400 Analyser; Beckman Coulter, Inc.,
Clare, Ireland) and a commercial assay kit (Tridelta
Development Ltd., Maynooth, Ireland).
Serum samples were analysed for the presence of

immunoglobulin (Ig) G against BRSV, BPI3V, BCoV
(SVANOVA Biotech, Uppsala, Sweden) BHV-4 (Bio – X
Diagnostics S.A., Rochefort, Belgium), BVDV (IDEXX
Laboratories Inc., Maine, USA) and BHV-1 glycoprotein
E (IDEXX Laboratories Inc., Maine, USA) by commer-
cially available enzyme-linked immunosorbent assays
(ELISA) each of which were performed in accordance
with the manufacturer’s instructions. H. somni serology
was performed by an in-house ELISA to detect IgM/IgG
against H. somni exopolysaccharide (EPS) as described
by Pan et al. [23]. Details on the calculations used in the
ELISA analyses, cut-off values employed and the correl-
ation between ELISA results and changes in antibody
status are presented in Table 1.

Table 1 Details on the calculations used in the ELISA analyses, the cut-off values employed and the correlation between the ELISA
results and antibody levels

ELISA Optical density (OD)
measured at

Calculation used Positive results Correlation between ELISA
value and antibody level

BRSV 450 nm PP = SampleCOD /PCOD X100 PP≥ 10 Positive

BPI3V 450 nm PP≥ 10 Positive

BCoV 450 nm PP≥ 10 Positive

BHV-1 gE 650 nm S/N ratio = SampleOD/N2 S/N ≤ 0.6 Negative

BHV-4 450 nm S/P ratio = (SampleOD – N1)/(P1-N1) S/P ≥ 0.3 Positive

BVD 450 nm S/P ratio = (SampleOD – N2)/(P2-N2) S/P≥ 0.3 Positive

H. somni 450 nm S/P ratio = (SampleOD – N3)/(P3-N3) S/P > 0.6 Positive

Note that the subsequent computation applied to the raw Optical Density (OD) result can differ between ELISA kits and has been designed to give optimal
diagnostic performance. Therefore the different comparison parameters (e.g. S/N, S/P or PP values) used here are inherent to the test rather than to the pathogen
COD = corrected optical density (calculated by subtraction of the mean OD value for the negative control)
Positive control (P1), Mean of 2 (P2) or 3 (P3) positive controls
Negative control (N1), Mean of 2 (N2) or 3 (N3) negative controls
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Statistical methods
Separate multivariable linear regression models (for
BHV-1, BHV-4, BoCV, BPI3V, BVDV, BRSV and H.
somni) were developed to quantify the effects of the vari-
ous risk factors on the exposure of the calves to BRD
pathogens between d − 14 and d 14. A plot of the resid-
uals of a simple model for each dependent variable was
created against the predicted values of that model and
the normality of the residuals was assessed to determine
if a transformation of the dependent variable was war-
ranted; the optimal transformation being determined by
Tukey’s ladder of powers [24]. As the diseases studied
are transmissible, the potential for clustering within pens
(i.e. group) was accounted for by including pen as a ran-
dom effect for each of the outcome variables examined
and its significance was tested using a likelihood ratio
test. For outcome variables in which clustering by pen
was not significant (p < 0.05), a linear regression model
was preferred. The change in antibody status, as
reflected by changes in PP values (BPI3V, BCoV and

BRSV), S/P ratios (BHV-4, BVDV and H. somni) or S/N
(BHV-1) ratios on ELISA analyses, between d − 14 and d
14 was the dependent variable in each analysis. The S/P
ratios, S/N ratios or PP values at d − 14 of each BRD
pathogen was considered as a risk factor for changes in
the antibody levels against other BRD pathogens in the
analysis during the peri-weaning period (d − 14 to d 14)
but were not included in the analysis for that specific
pathogen (i.e. BHV-1 S/N at d-14 was not considered as
a risk factor for BHV-1 S/N change during the peri-
weaning period). Univariable analyses were performed
individually to determine the association of each poten-
tial risk factor with the dependent variable using Stata
v11. The risk factors included in the univariable analysis
are listed in Table 2.
Risk factors identified as significant in the univariable

analyses (p < 0.20) were included in the multivariable
analysis. Independent variables were plotted against the
dependent variable and, if a linear relationship did not
exist between both and a transformation of the

Table 2 The potential risk factors for exposure to BRD pathogens (as reflected by S/P ratio (for BHV-4, BVDV, H. somni), PP value
(for BRSV, BPI3V, BCoV) and S/N ratio (BHV-1)) which were included in the univariable analysis

Risk factor type Details

Intrinsic risk factors Calf breed (Jersey or Friesian)

ZST score on arrival

Arrival age

Arrival weight

Management risk factors Pen to which the animal was assigned (n = 4)

Nutrition plane (high, medium or low)

UFL (unité fourragère lait) intake in the pre-weaning period (d-56 to d-14)

Percentage of UFL allowance consumed in pre-weaning period (d-56 to d-14)

Average daily gain in pre-weaning period (d-56 to d-14)

Clinical risk factors Maximum temperature recorded during the pre-weaning period (d-56 to d-14)

Mean temperature recorded during the pre-weaning period (d-56 to d-14)

Maximum respiratory score in the pre-weaning period (d-56 to d-14)

Number of times treated for BRD in pre-weaning period (d-56 to d-14)

Number of sickness bouts recorded in the pre-weaning period (d-56 to d-14)

Total white blood cell count at d − 14

Lymphocyte count at d − 14

Haptoglobin level at d − 14

H. somni S/P at d − 14

BHV-4 S/P at d − 14

BVDV S/P at d − 14

BHV-1 S/N at d − 14

BPI3V PP at d − 14

BRSV PP at d − 14

BCoV PP at d − 14

The pre-weaning period was from d − 56 to d − 14 relative to weaning at d 0. Note that BRD pathogen S/P ratios, S/N ratios or PP values at d − 14 were not
considered as risk factors for changes in antibody levels for that specific pathogen during the peri-weaning period (d − 14 to d 14)
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independent variable was not appropriate due to a non-
linear relationship between the transformed independent
variable and the dependent variable, continuous inde-
pendent variables were then included as categorical vari-
ables based on the quartiles of the continuous
independent variable. Plausible interactions were consid-
ered in the full model during model construction and
two-way interactions identified as significant (i.e. be-
tween arrival age, arrival weight, ZST and breed) were
included in the multivariable model during development.
The variance inflation factor was used to detect multi-
collinearity. A backward stepwise selection procedure
based on a likelihood ratio test (p > 0.05) was used to
eliminate terms from the model. Regression diagnostics
(heteroskedasticity, skewness and kurtosis) and plots of
the residuals versus the predicted values were used to
assess the presence of outliers and to check the fit of the
final model.

Results
Of the 72 calves in the study, 43 were Holstein-Friesian
and 29 were Jersey calves. In total, 24 animals were on
the high plane of nutrition with 25 and 23 on the
medium and low planes of nutrition respectively. The
mean age and weight of calves on arrival were 19 (S.D.
8) days and 41.4 (S.D. 8.4) kgs respectively and the mean
ZST result on arrival was 17.95 units (SD 3.46 units). A
bout of sickness was defined as a concurrent recorded
temperature > 39.5 °C and respiratory score of ≥5 in a
calf. Sickness was not recorded during the pre-weaning
period (d − 56 to d − 14) in 36 calves, was recorded once
in 26 calves, twice in 7 calves, 3 times in 2 calves and 4
times in 1 calf. The mean values of S/P, PP or S/N for
each of the respective BRD pathogens of interest and the
change in mean values from d − 14 to d 14 (relative to
weaning at day 0) are presented in Fig. 1.
A schematic diagram of significant linkages identified

in the seven regression models is presented in Fig. 2.
The model for the change in BRSV PP during the peri-
weaning period included the pen the animal occupied as
a random effect. Transformed outcome variables were
used in the models of BVDV S/P change (square of the
outcome variable), BHV-1 S/N change (cubed root of
the outcome variable) and H. somni S/P change (cubed
root of the outcome variable). The variables which were
present in each model are displayed in Table 3.
Breed (p < 0.001) and higher BPI3V P P values at d − 14

(p ≤ 0.006) were significantly associated with changes in
the square of BVDV S/P ratios during the peri-weaning
period (d − 14 to d 14 relative to weaning at d 0). Jersey
breed calves experienced a significantly reduced change in
squared BVDV S/P value compared to Holstein-Friesian
calves as did calves with higher BPI3V PP values (between
76.5 and 130) at d − 14 compared to those with lower

BPI3V PP values (between 39 and 76.5). A mean rectal
temperature of 38.7 °C during the pre-weaning period was
also significantly associated (p = 0.014) with changes in
the square of BVDV S/P (Table 3).
Arrival weight was a significant risk factor (p ≤ 0.001)

for BHV-4 S/P change during the same period with
calves between 34.5 kg and 59 kg all experiencing
greater increases in BHV-4 S/P when compared to
lighter calves (between 28.5 and 34.5 kg). BRSV PP
values between 46.5 and 74 on d − 14 were also signifi-
cantly associated (p ≤ 0.026) with increases in BHV-4 S/
P ratios during the peri-weaning period when compared
to those with BRSV PP values between 18 and 46.5.
Likewise, higher BVDV S/P ratios (between 0.547 and
1.617) at d − 14 were significantly associated (p ≤ 0.004)
with increases in BHV-4 S/P ratios during the peri-
weaning period when compared to calves with lower
BHV-4 S/P ratios (≤0.300).
A smaller BPI3V PP change during the peri-weaning

period was significantly associated (p ≤ 0.031) with a
heavier arrival weight (34.5–49 kgs) among calves enter-
ing the calf house when compared to lighter calves. The
reduced change in BPI3V PP value was also associated
(p = 0.001) with a high respiratory score (≥8) during the
pre-weaning period (d-56 to d-14) when compared to
calves with the lowest respiratory scores (≤3). Increases
in BPI3V PP values were associated (p = 0.033) with
BHV-1 S/N ratios at d − 14 of > 0.434 and ≤1.046 when
compared to lower S/N ratios between 0.074 and 0.140.
Lymphocyte counts at the beginning of weaning (d − 14)
of > 5.13 X109/l to ≤5.88 X109/l were also significantly
associated with an increase in the change of BPI3V PP
value (p = 0.035) during the peri-weaning period, when
compared to those with a lymphocyte count of ≤5.13
X109/l.
BHV-1 S/N ratios decreased (p = 0.038) during the

peri-weaning period in calves that arrived at 16–20 days
of age when compared to those aged 5–12 days on ar-
rival. This change was reversed in calves aged 27 to
41 days of age on arrival (p = 0.026) with an increase in
BHV-1 S/N ratios when compared to the youngest arriv-
ing calves (aged 5–12 days). Decreases in BHV-1 S/N ra-
tios during the peri-weaning period were significantly
associated with haptoglobin levels of between 1.32 and
1.60 mg/ml (p = 0.007) when compared to haptoglobin
levels between 0.75 and 1.08 mg/ml at the beginning of
weaning (d − 14). Lymphocyte counts at the beginning of
weaning (d − 14) between 5.13 X109/l and 5.88 X109/l
were significantly associated with a decrease in BHV-
1 S/N value (p = 0.002) during the peri-weaning period
when compared to those with lower lymphocyte counts
(≤ 5.13 X109/l).
Changes in the BCoV PP values during the peri-

weaning period were significantly less (p = 0.004) in the
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oldest calves (aged 27–41 days) when compared to the
youngest (aged 5–12 days) calves on arrival.
A maximum respiratory score of ≥8 prior to the com-

mencement of gradual weaning was significantly associ-
ated (p = 0.010) with an increase in the change of H.
somni S/P value in the peri-weaning period. Changes in
BRSV PP value during the same period were associated
with the maximum rectal temperature recorded during
the pre-weaning period and were also significantly
clustered (p < 0.001) by the pen the calves occupied prior
to the commencement of gradual weaning (Table 4).

Discussion
The objective of this study was to identify risk factors
associated with exposure to BRD pathogens during the
peri-weaning period in dairy bull calves using serological
responses to these pathogens as proxy indices of expos-
ure. These responses were determined by calculating
changes in sample to positive ratios (S/P), percentage
positivity (PP) or sample to negative ratios (S/N), to a
wide range of recognised BRD pathogens during the
peri-weaning period. The calves in this study were
housed in a situation of minimum stress and manage-
ment advantage to reduce adverse effects from those
sources on our findings. By focusing less on disease but

rather on good health, and factors influencing the calf
immune response, our study identified intrinsic (breed,
arrival age and arrival weight), management (pen) and
clinical (rectal temperature and respiratory score) factors
which were significantly associated with changes in BRD
pathogen serological status.
Arrival age at housing was significantly associated with

a reduction in BCoV PP (p = 0.004) and an increase in
BHV-1 S/N (p = 0.026) in the oldest cohort (27–41 days)
when compared to the youngest cohort (5–12 days) of
calves. As both of these results are consistent with a de-
crease in antibody levels, it is likely that they reflect the
natural decline of maternally derived antibody (MDA)
with age. BCoV has been identified as a prevalent patho-
gen in BRD in Ireland [25] and internationally [26, 27].
Recently, Toftaker et al. [28] in a bulk tank serology
cross-sectional study in Norway, identified herd size,
purchase of livestock, geographic location, proximity to
neighbours and seropositivity to BRSV as risk factors for
seropositivity to BCoV in dairy herds. As acknowledged
by Pardon et al. [29], BCoV seroconversion does not
distinguish between respiratory or enteric infections,
although concurrent faecal and nasal shedding is a
relatively frequent event in calves [30]. Seventeen calves
in the study population were recorded with a faecal

Fig. 1 The mean values of the antibody levels (as reflected by S/P. PP or S/N values) to each of the BRD pathogens of interest and the
standard error of the mean (in parantheses) at d − 14 and d 14 relative to weaning at d 0. Note that solid lines (BCoV PP, BPI3V PP, BRSV
PP) are plotted against the left hand y-axis while the broken lines (BVDV S/P, BHV-4 S/P, BHV-1 S/N and H. somni S/P) are plotted against
the right hand y-axis
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score of ‘2’ (loose and watery faeces) suggestive of en-
teric infection during the pre-weaning period. As BCoV
infection typically causes diarrhoea in calves between 3
and 21 days of age [31], it is quite likely that younger
calves in this study housed at the peak age of enteric
infection were more likely to acquire and spread BCoV
infection than older animals arriving after the peak of
enteric infection had passed.
In this study we recorded lower unit increases in BPI-

3 V PP and higher unit increases in BHV-4 S/P during
the peri-weaning period among heavier calves on arrival
into the house when compared to the lightest group.
Previously, low bodyweight at housing has been identi-
fied as a risk factor for the development of BRD at the
individual [32, 33] but not at the group [34] level. While
the reported BHV-4 S/P increase would appear to
contradict these findings, it is important to recall that
BRD pathogen antibodies reflect exposure history rather
than disease. One possibility is that lower weight calves
were exposed and seroconverted to BHV-4 at an earlier
stage than heavier calves and the change in antibody
level during the peri-weaning period reflects delayed
exposure in heavier calves. This may be, in part, due to
more prolonged systemic effects of BHV-4 infection as a

result of its capability for latency or inherent host animal
traits such as the respiratory rate or the metabolism of
heavier calves may also play a role. Alternatively, lower
bodyweight calves may not be capable of mounting an
equivalent antibody response to that of heavier animals
[35]. Further focused research examining the mechanism
of the effect of bodyweight on calf immune response to
BRD pathogens is warranted.
The finding of a clustering effect of exposure to BRD

pathogens would seem intuitive. Brscic et al. [34] reported
a higher prevalence of respiratory distress in young calves
when the number of animals per pen increased. Miller et
al. [36] reported that BRD outbreaks tend to cluster within
calf housing systems; however, of the BRD pathogens ex-
amined in the present study, only changes in BRSV PP
were significantly clustered by pen. This may indicate that
BRSV is significant at the group rather than the individual
level. MDA can suppress responses to BRSV resulting in a
minority of BRSV seronegative calves seroconverting.
Such an event may have impacted the detection of associ-
ations between risk factors and changes in BRSV PP in
the current study [29, 37–39].
During the pre-weaning period, a high maximum

respiratory score (≥8), reflecting typical clinical signs of

 

Fig. 2 A schematic diagram of the significant linkages identified in the seven models between intrinsic (orange boxes), management (green box)
and clinical (purple boxes) independent variables and the dependent (pink boxes) variables. The dependent variables were antibody level
changes during the peri-weaning period (d − 14 to d14 relative to weaning at d 0) as reflected by changes in S/N ratio (for BHV-1), PP value
(for BRSV, BCoV and BPI3V) or S/P ratio (for BHV-4, BVDV and H. somni)
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BRD, was significantly associated (p = 0.001) with a
decrease in BPI3V PP during the peri-weaning period.
While this result may appear counter-intuitive, a similar
finding was reported by Tuncer and Yesilbag [40]. In
that study, despite an increase in the proportion of
BPI3V seropositive calves between sampling points at 1
and 2 months of age, the mean antibody levels of all
calves decreased; a feature they attributed to a low
BPI3V antibody response combined with a high rate of
maternally-derived BPI3V antibody catabolisation. It is

possible that the decrease in peri-weaning BPI3V PP in
the present study, in association with a high pre-
weaning maximum respiratory score, may be due to a
similar phenomenon.
A high maximum pre-weaning respiratory score was

also the only risk factor for H. somni S/P increase during
the peri-weaning period. The H. somni ELISA employed
in this study detects antibody against EPS, a major
component of the H. somni biofilm matrix, which is pro-
duced in much greater quantities by pathogenic strains

Table 3 Variables significantly associated in a multivariable linear regression model with a change in respiratory pathogen serology
percentage positivity (PP), sample to positive ratio (S/P) or sample to negative control ratio (S/N) from the beginning of gradual
weaning (day − 14) to day 14 post weaning (day+ 14) in housed dairy calves

Note that boxes coloured in grey denote variables which were not significant (p > 0.05) in the multivariable model of a given pathogen
aThe square of BVDV percentage positive change was used as the dependent variable
bThe cubed root of the change in sample to negative control ratio was used as the dependent variable
cThe cubed root of the change in sample to positive control percentage was used as the dependent variable

Table 4 Linear mixed regression model of the variables associated with a change in BRSV percentage positivity (PP) from the
beginning of gradual weaning (day -14) to 2 weeks post weaning (day +14)

Variable Categories Coefficient Standard error P value

Intercept 31.577 5.292 <0.001

Maximum rectal temperature (°C) in
the pre-weaning period (d-56 to d-14)

38.9–39.4 Baseline

39.5–39.6 7.956 4.955 0.108

39.7–40.0 -7.442 4.513 0.099

40.1–41.3 -3.732 4.474 0.404

Random effects Variance estimate Standard error

Pen 78.259 73.088 <0.001

Residual 194.018 34.026

Murray et al. BMC Veterinary Research  (2018) 14:53 Page 8 of 11



during the disease process compared to commensal
strains, helping to differentiate between diseased calves
and those with antibodies derived from harbouring com-
mensal organisms [23]. Increases in H. somni S/P over
the peri-weaning period reflect exposure to pathogenic
strains of H. somni in the preceding weeks. Pan et al.
[23] in a study of calves experimentally exposed to H.
somni, reported antibody peaks to H. somni EPS between
3 and 8 weeks post-exposure. The temporal association
between respiratory signs (as reflected by a high max-
imum respiratory score ≥ 8) during the 42 days prior to
weaning and the increases in H. somni S/P in the peri-
weaning period (a range of 4 to 10 weeks after respira-
tory signs were recorded) concur with the observations
of Pan et al. [23] and support their conclusions that
assays measuring the antibody response to EPS can
identify cattle with disease due to H. somni infection.
Levels of antibodies to some BRD pathogens at the

beginning of the peri-weaning period were significantly
associated with changes in BHV-4 S/P during that
period. Higher levels of BRSV and BVDV antibodies
(as reflected by BRSV PP and BVDV S/P respectively)
at the beginning of weaning were significantly associ-
ated (p < 0.026) with increases in BHV-4 S/P during
the peri-weaning period. Glass et al. [41] have shown
that animal genetics influence both the responses to
vaccination and infection in cattle. It is possible that
higher levels to BVDV and BRSV at the beginning of
weaning may reflect a cohort of genetically deter-
mined ‘better responders’ in the study population;
larger increases in BHV-4 levels in response to expos-
ure during weaning would also be expected among
these calves when compared to the poorer responders.
It is notable that of the 30 highest responders to
BHV-4 during the peri-weaning period, all were Holstein-
Friesian from the same farm with the exception of two
Jersey calves from a different farm. It is also feasible that
these results reflect exposure of the calves to multiple
pathogens with humoral responses to BHV-4 elicited at a
slower rate when compared to those triggered by exposure
to BRSV and BVDV. Although Thiry et al. [42] reported
that the immune response of cattle after BHV-4 infection
is characterised by low levels of neutralising antibodies, to
the authors’ knowledge, studies examining the rate of
serological response to BRD pathogens in calves have not
been undertaken.
Haptoglobin, a protein produced primarily by hepato-

cytes following stimulation by proinflammatory cyto-
kines, is part of the acute-phase response to
inflammation [43]. While haptoglobin has been identi-
fied as a potentially sensitive indicator of BRD in calves
owing to its prolonged response [44], this response can
be quite variable [45]. Orro et al. [46] concluded that the
haptoglobin response requires more profound tissue

damage, which is more likely to occur in bacterial rather
than viral infections. Young et al. [47], following the
screening of cattle at feedlot entry and at 40 and 65 days
later, reported that haptoglobin had a poor predictive
ability for clinical respiratory disease. In this present
study, haptoglobin was only identified as a significant
predictor (p = 0.007) of the reduction of BHV-1 S/N ra-
tios during the peri-weaning period. Lower S/N ratios
reflect higher levels of BHV-1 antibodies, and haptoglo-
bin levels between 1.32 and 1.60 mg/ml were associated
with reduced BHV-1 S/N ratios when compared to
lower haptoglobin levels (≤1.08 mg/ml). This finding
supports a potential role for haptoglobin in identifying
exposure of calves to BHV-1.
Data analysis in this study presented some challenges

in terms of determining antibody level changes that were
significant and in considering the potential effect of
MDA. We decided to use all the available information
on the change in serological antibody levels (i.e. the
change in BRD-specific antibody levels as reflected by
the S/P, PP or S/N) rather than assuming that a particu-
lar antibody level or antibody level change should be
classed as biologically significant. There were a number
of reasons for the adoption of this approach. Martin and
Bohac [48] reported that such an approach (using
ANOVA in their study) was more powerful and more
likely to identify significant associations. Windeyer et al.
[49] also concluded that the detection of seroconversion
was difficult in calves with high levels of MDA as these
calves must produce more endogenous antibodies than
calves with lower levels of MDA to achieve the four-fold
increase in antibodies required for seroconversion. The
range of BRD pathogen-specific MDA will vary consider-
ably among calves following the consumption of colos-
trum [50] but, while BRD pathogen-specific MDA
begins to decline from their second month in dairy
calves [40], it was estimated by Fulton et al. [51], in a
study of non-vaccinated beef calves, that calves may be
approximately 6 months of age before MDA against
these pathogens is no longer detectable. Calves were en-
rolled into the present study at a mean age of 19 days
and had received colostrum, as reflected by ZST results.
Calf vaccination was necessary in this study, firstly to

minimise disease in a group of calves assembled and
housed as part of a larger feeding trial and, secondly, as
it also reflects the reality of practices on farms where
such measures are typically in place. Nevertheless it is
difficult to quantify the effect of calf vaccination in this
study. MDA inhibits the production of endogenous anti-
body in response to vaccination [52] and the half-lives of
vaccinal antibodies in dairy calves [48] appear to be
shorter than those in beef calves [51]. Although calves
were vaccinated on arrival, of the BRD pathogen levels
examined, only BPI3V and BRSV antibody levels should

Murray et al. BMC Veterinary Research  (2018) 14:53 Page 9 of 11



have been affected by MDA as the BHV-1 ELISA
employed does not detect antibodies against the BHV-1
vaccine used. Studies of the serological responses of
calves with MDA to inactivated BPI-3 V [53] and inacti-
vated BRSV [54] vaccines have shown that antibody
levels continue to decline following initial vaccination
and that a second vaccine dose is required to increase
levels (BPI3V) or slow the rate of maternal antibody
decay (BRSV). The authors thus acknowledge that while
MDA and vaccination may have influenced the level of
some BRD pathogen-specific antibodies recorded at the
beginning of gradual weaning (42 days post-vaccination),
they do not consider that these interventions signifi-
cantly distorted the measured changes in antibody status
between the sampling points at the beginning and end
of the peri-weaning period. Therefore, this study remains
valid in what it reveals about BRD pathogen exposure
within housed calves. The authors concede that the con-
trol of other aspects of the study (e.g. nutritional status)
would suggest that the findings may not be generalisable
to the wider population.

Conclusions
Serological analysis and linear regression modelling has
identified associations between a number of intrinsic,
management and clinical risk factors such as age at
housing, the sharing of pens, pre-weaning respiratory
clinical score and serum haptoglobin concentration with
exposure to BRD-pathogens among group-housed dairy
bull calves. The identification of such factors will
contribute to the ongoing evidence-based approach to
the prevention of BRD at housing.
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