56 research outputs found

    Trajectory Deformations from Physical Human-Robot Interaction

    Full text link
    Robots are finding new applications where physical interaction with a human is necessary: manufacturing, healthcare, and social tasks. Accordingly, the field of physical human-robot interaction (pHRI) has leveraged impedance control approaches, which support compliant interactions between human and robot. However, a limitation of traditional impedance control is that---despite provisions for the human to modify the robot's current trajectory---the human cannot affect the robot's future desired trajectory through pHRI. In this paper, we present an algorithm for physically interactive trajectory deformations which, when combined with impedance control, allows the human to modulate both the actual and desired trajectories of the robot. Unlike related works, our method explicitly deforms the future desired trajectory based on forces applied during pHRI, but does not require constant human guidance. We present our approach and verify that this method is compatible with traditional impedance control. Next, we use constrained optimization to derive the deformation shape. Finally, we describe an algorithm for real time implementation, and perform simulations to test the arbitration parameters. Experimental results demonstrate reduction in the human's effort and improvement in the movement quality when compared to pHRI with impedance control alone

    Leveraging Disturbance Observer Based Torque Control for Improved Impedance Rendering with Series Elastic Actuators

    Get PDF
    The fidelity with which series elastic actuators (SEAs) render desired impedances is important. Numerous approaches to SEA impedance control have been developed under the premise that high-precision actuator torque control is a prerequisite. Indeed, the design of an inner torque compensator has a significant impact on actuator impedance rendering. The disturbance observer (DOB) based torque control implemented in NASA's Valkyrie robot is considered here and a mathematical model of this torque control, cascaded with an outer impedance compensator, is constructed. While previous work has examined the impact a disturbance observer has on torque control performance, little has been done regarding DOBs and impedance rendering accuracy. Both simulation and a series of experiments are used to demonstrate the significant improvements possible in an SEA's ability to render desired dynamic behaviors when utilizing a DOB. Actuator transparency at low impedances is improved, closed loop hysteresis is reduced, and the actuator's dynamic response to both commands and interaction torques more faithfully matches that of the desired model. All of this is achieved by leveraging DOB based control rather than increasing compensator gains, thus making improved SEA impedance control easier to achieve in practice

    On the Efficacy of Isolating Shoulder and Elbow Movements with a Soft, Portable, and Wearable Robotic Device

    Get PDF
    Treatment intensity has a profound effect on motor recovery following neurological injury. The use of robotics has potential to automate these labor-intensive therapy procedures that are typically performed by physical therapists. Further, the use of wearable robotics offers an aspect of portability that may allow for rehabilitation outside the clinic. The authors have developed a soft, portable, lightweight upper extremity wearable robotic device to provide motor rehabilitation of patients with affected upper limbs due to traumatic brain injury (TBI). A key feature of the device demonstrated in this paper is the isolation of shoulder and elbow movements necessary for effective rehabilitation interventions. Herein is presented a feasibility study with one subject and demonstration of the device's ability to provide safe, comfortable, and controlled upper extremity movements. Moreover, it is shown that by decoupling shoulder and elbow motions, desired isolated joint actuation can be achieved

    The Rice Haptic Rocker: Skin stretch haptic feedback with the Pisa/IIT SoftHand

    Get PDF
    Touch provides an important cue to perceive the physical properties of the external objects. Recent studies showed that tactile sensation also contributes to our sense of hand position and displacement in perceptual tasks. In this study, we tested the hypothesis that, sliding our hand over a stationary surface, tactile motion may provide a feedback for guiding hand trajectory. We asked participants to touch a plate having parallel ridges at different orientations and to perform a self-paced, straight movement of the hand. In our daily-life experience, tactile slip motion is equal and opposite to hand motion. Here, we used a well-established perceptual illusion to dissociate, in a controlled manner, the two motionestimates. According to previous studies, this stimulus produces a bias in the perceived direction of tactile motion, predicted by tactile flow model. We showed a systematic deviation in the movement of the hand towards a direction opposite to the one predicted by tactile flow, supporting the hypothesis that touch contributes to motor control of the hand. We suggested a model where the perceived hand motion is equal to a weighted sum of the estimate from classical proprioceptive cues (e.g., from musculoskeletal system) and the estimate from tactile slip

    Hybrid FES-exoskeleton control: Using MPC to distribute actuation for elbow and wrist movements

    Get PDF
    IntroductionIndividuals who have suffered a cervical spinal cord injury prioritize the recovery of upper limb function for completing activities of daily living. Hybrid FES-exoskeleton systems have the potential to assist this population by providing a portable, powered, and wearable device; however, realization of this combination of technologies has been challenging. In particular, it has been difficult to show generalizability across motions, and to define optimal distribution of actuation, given the complex nature of the combined dynamic system.MethodsIn this paper, we present a hybrid controller using a model predictive control (MPC) formulation that combines the actuation of both an exoskeleton and an FES system. The MPC cost function is designed to distribute actuation on a single degree of freedom to favor FES control effort, reducing exoskeleton power consumption, while ensuring smooth movements along different trajectories. Our controller was tested with nine able-bodied participants using FES surface stimulation paired with an upper limb powered exoskeleton. The hybrid controller was compared to an exoskeleton alone controller, and we measured trajectory error and torque while moving the participant through two elbow flexion/extension trajectories, and separately through two wrist flexion/extension trajectories.ResultsThe MPC-based hybrid controller showed a reduction in sum of squared torques by an average of 48.7 and 57.9% on the elbow flexion/extension and wrist flexion/extension joints respectively, with only small differences in tracking accuracy compared to the exoskeleton alone.DiscussionTo realize practical implementation of hybrid FES-exoskeleton systems, the control strategy requires translation to multi-DOF movements, achieving more consistent improvement across participants, and balancing control to more fully leverage the muscles' capabilities

    Analysis of oral cancer epidemiology in the US reveals state-specific trends: implications for oral cancer prevention

    Get PDF
    Background: Downward trends have been observed in oral cancer incidence and mortality in the US over the past 30 years; however, these declines are not uniform within this population. Several studies have now demonstrated an increase in the incidence and mortality from oral cancers among certain demographic groups, which may have resulted from increased risks or risk behaviors. This study examines the underlying data that comprise these trends, to identify specific populations that may be at greater risk for morbidity and mortality from oral cancers. Methods: Oral cancer incidence and mortality data analyzed for this study were generated using the National Cancer Institute\u27s Surveillance, Epidemiology and End Results (SEER) program. Results: While oral cancer incidence and mortality rates have been declining over the past thirty years, these declines have reversed in the past five years among some demographic groups, including black females and white males. Sorting of these data by state revealed that eight states exhibited increasing rates of oral cancer deaths, Nevada, North Carolina, Iowa, Ohio, Maine, Idaho, North Dakota, and Wyoming, in stark contrast to the national downward trend. Furthermore, a detailed analysis of data from these states revealed increasing rates of oral cancer among older white males, also contrary to the overall trends observed at the national level. Conclusion: These results signify that, despite the declining long-term trends in oral cancer incidence and mortality nationally, localized geographic areas exist where the incidence and mortality from oral cancers have been increasing. These areas represent sites where public health education and prevention efforts may be focused to target these specific populations in an effort to improve health outcomes and reduce disparities within these populations

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC
    • …
    corecore