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Hybrid FES-exoskeleton control:
Using MPC to distribute actuation
for elbow and wrist movements
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1Department of Mechanical Engineering, Mechatronics and Haptics Interfaces Laboratory, Rice

University, Houston, TX, United States, 2Center for Human Machine Systems, Department of Mechanical
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Introduction: Individuals who have su�ered a cervical spinal cord injury prioritize

the recovery of upper limb function for completing activities of daily living. Hybrid

FES-exoskeleton systems have the potential to assist this population by providing a

portable, powered, and wearable device; however, realization of this combination

of technologies has been challenging. In particular, it has been di�cult to show

generalizability across motions, and to define optimal distribution of actuation,

given the complex nature of the combined dynamic system.

Methods: In this paper, we present a hybrid controller using a model

predictive control (MPC) formulation that combines the actuation of both an

exoskeleton and an FES system. The MPC cost function is designed to distribute

actuation on a single degree of freedom to favor FES control e�ort, reducing

exoskeleton power consumption, while ensuring smooth movements along

di�erent trajectories. Our controller was tested with nine able-bodied participants

using FES surface stimulation paired with an upper limb powered exoskeleton.

The hybrid controller was compared to an exoskeleton alone controller, and

we measured trajectory error and torque while moving the participant through

two elbow flexion/extension trajectories, and separately through two wrist

flexion/extension trajectories.

Results: The MPC-based hybrid controller showed a reduction in sum of squared

torques by an average of 48.7 and 57.9% on the elbow flexion/extension and

wrist flexion/extension joints respectively, with only small di�erences in tracking

accuracy compared to the exoskeleton alone.

Discussion: To realize practical implementation of hybrid FES-exoskeleton

systems, the control strategy requires translation to multi-DOF movements,

achieving more consistent improvement across participants, and balancing

control to more fully leverage the muscles’ capabilities.

KEYWORDS

model predictive control (MPC), hybrid control (HC), functional electrical stimulation

(FES), movement assistance, upper limb exoskeleton

1. Introduction

There are ∼291,000 people in the United States living with spinal cord injuries, and

the majority of these are cervical level injuries, resulting in tetraplegia (NSCISC, 2019).

Injuries at such a high level of the spinal cord create severe arm and hand disabilities,

resulting in an inability to complete Activities of Daily Living (ADLs). As a result, 71% of

individuals with tetraplegia currently require assistance with ADLs (Collinger et al., 2013).

Given this, it is not surprising that restoration of arm and hand function is a top priority

among people with tetraplegia due to cervical spinal cord injuries (SCI) (Anderson, 2004).

With scarce rehabilitation and assistive technology options, these individuals are largely

dependent on full-time caregivers for feeding, grooming, and many other activities of daily
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living. Regaining the ability to perform these tasks independently

will reduce requirements on caregivers and increase opportunities

for individuals to return to social participation in their

communities, both of which are highly correlated to quality

of life (Dijkers, 1997).

Recovery of arm and hand function through rehabilitation can

be achieved for individuals with some residual muscle capability

(Dietz et al., 2002; Beekhuizen and Field-Fote, 2005), and there

are promising results that show that the same intensive robotic

rehabilitation that has been successful for inducing plasticity and

recovery following stroke (Reinkensmeyer et al., 2000; Charles

et al., 2005; Lum et al., 2012; Blank et al., 2014) can be effective

for SCI (Kadivar et al., 2012; Fitle et al., 2015; Francisco et al.,

2017; Frullo et al., 2017; Yozbatiran and Francisco, 2019). For those

without residual motor capability, however, or for those for whom

rehabilitation interventions have not been able to restore functional

movement, assistive technologies are a more viable option for

replacing lost function. Such approaches incorporate mechanical

devices that are attached to the limb and have the capability to

move the limb or hand, or approaches that electrically stimulate the

existing muscles, causing muscle contraction and inducing motion

of the upper limb.

Functional electrical stimulation (FES) is a promising assistive

technology to restore arm and hand function. By activating a

person’s own paralyzed muscles via surface electrodes placed on

the skin or surgically implanted electrodes, limb movements can

be generated. This approach requires very low energy consumption

and exhibits high embodiment by the person; however, FES

cannot produce sufficient torques to enable whole-arm reaching

movements in people with tetraplegia, as many muscles are

unresponsive to FES (Peckham et al., 1976; Mulcahey et al., 1999).

Further, general multi-jointmotions are notoriously hard to control

with FES even with the most advanced systems (Ajiboye et al.,

2017), often resulting in fine-tuned feed-forward implementations

due to the physiological delays in muscle response to applied

stimulation, and difficulty in accurately modeling the response

to muscle activation. Augmenting FES with an assistive robot

offers additional torque to support whole arm reaching while

also offering improved movement accuracy, but this comes at the

expense of increased bulkiness and decreased wearability of the

combined FES-robotic system. An optimal combination of FES

and an assistive robot would maximize the contribution of FES to

minimize size and power requirements of the robot (Dunkelberger

et al., 2020).

This combination of FES with robotic devices is starting to

gain traction, and is termed hybrid FES-robot (or FES-exoskeleton)

control. A conceptual representation of using FES with a robot

is shown in Figure 1, where both robotic and FES action can

complement each other to assist in the completion of activities of

daily living. Many of the early approaches to bring this concept

to reality did not truly combine and coordinate the actuation

strategies for upper limb movements (Dunkelberger et al., 2020).

Instead, each of the actuation types was used to achieve separate

functions. For example, robotic devices have been used to lock

degrees of freedom (Klauer et al., 2014; Ambrosini et al., 2017) or as

gravity compensation (Cannella et al., 2016) enabling the muscles

to relax and preventing fatigue. Other works have used robotic

support devices to actuate one set of degrees of freedom, while FES

FIGURE 1

An example future application of hybrid systems is shown for a

reach and grasp task. The incorporation of both FES and a robot

allows for a large portion of the movement to be provided by FES,

and the robot can provide small amounts of power to provide

minimal movement corrections. With the robot alone, all power for

the movement must be provided by the robot.

is used to actuate another set (Varoto et al., 2008; Schulz et al.,

2011; Ajiboye et al., 2017). Typically the robot controls motions

that need precision or require larger torques and forces to support,

such as elbow flexion and extension, while FES is used for coarse

movements, such as grasping. For upper limbmotions with coupled

degrees of freedom, such as shoulder, elbow, and wrist movements,

these existing control strategies pit FES against a robot-imposed

locked-joint, gravity, or single-joint motion constraint, essentially

wasting the free actuation from FES and transferring it to the

robot. Recently, single-joint hybrid systems that do share actuation

on the same joint have been explored, but research has been

limited, testing only in the elbow flexion extension joint with

biceps electrodes in a minimum jerk trajectory (Wolf et al., 2017;

Burchielli et al., 2022), or in simulation (Bardi et al., 2021).

In lower limb applications, more advanced hybrid control

algorithms have been explored, largely enabled by the repetitive

nature of gait motions (Bulea et al., 2014; del Ama et al., 2014;

Ha et al., 2016). These lower limb hybrid systems often use a

version of iterative learning control that takes advantage of the

repetitive movements to fine-tune control over several cycles. Some

recent research has begun to use model predictive control (MPC)

algorithms, which can be more readily adapted to non-cyclic

movements in the lower limbs (Kirsch et al., 2018; Bao et al., 2021),

and which are more similar to the non-cyclic movements required

of upper-limb movements. Results from these studies using MPC

have shown the ability to follow a step reference trajectory and

hold a position, and the algorithms should generalize to arbitrary

trajectories.

A truly shared approach for hybrid FES and robotic control

of upper limb reaching movements is needed to combine these

techniques in a manner that achieves generalized upper limb

movement assistance in an optimal manner. In this paper, we
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present a model-based control approach to hybrid FES-exoskeleton

control. Recent works have demonstrated the first steps toward

this vision. Wolf and Schearer (2022) demonstrated the use of

model-based algorithms to power FES in combination with gravity

compensation from a robot. Our group has also demonstrated

shared control of elbow flexion and extension movements with

FES and exoskeleton assistance acting in coordination to follow

a desired trajectory (Dunkelberger et al., 2022b). In that work,

we showed that a model-based controller for our upper limb

exoskeleton, which has knowledge of the expected contributions

of FES, requires significantly less robot torque than a standard

PD control algorithm, with minimal loss in trajectory following

accuracy. Here, we expand our initial demonstration along a

number of fronts. First, we present anMPC algorithm that removes

the integral term used previously and incorporates an additional

proportional-integral-derivative (PID) controller acting in parallel,

resulting in improved performance in both trajectory following and

reduction in torque requirements from the exoskeleton compared

to our initial controller. We incorporate a sophisticated model of

the user’s arm dynamics that accurately captures behavior across

the exoskeleton workspace. We experimentally demonstrate the

performance of the hybrid FES-exoskeleton controller in able-

bodied participants completing two trajectories for two degrees-

of-freedom of the exoskeleton (elbow flexion-extension and wrist

flexion-extension), and we compare the performance of the hybrid

controller to an exoskeleton-alone case, as illustrated in Figure 1.

Finally, we examine longitudinal performance of the hybrid FES-

exoskeleton control for a subset of participants to determine how

performance changes 1 week after the initial experiment trials.

2. Materials and methods

2.1. Participants

Nine able-bodied participants (four female, avg age 22.9)

participated in a single session of the experiment after providing

informed consent. Three of the nine participants, who had

experience with FES prior to the initial experimental session,

also completed a second session of testing using the same

protocol at least 1 week after their first experimental session.

The study was approved by the institutional review boards at

Rice University (IRB #FY2017-461) and Cleveland State University

(IRB #30213-SCH-HS).

2.2. Procedure

The goal of this study is to develop a new hybrid controller

that distributes actuation between an exoskeleton system and an

FES system. The goal of such a controller is that it can reduce the

power requirements in comparison to an exoskeleton alone system,

which can lead to more portable devices in the future that can

assist individuals with SCI in completing general activities of daily

living. To test the effectiveness, the developed hybrid controller is

used to provide movements on two different degrees of freedom

(DOF), elbow flexion/extension, and wrist flexion/extension. To

understand how this compares to available exoskeleton systems, the

resulting torque and position profiles for the hybrid controller are

compared with an exoskeleton-alone controller in following two

different trajectories.

2.3. Materials

The hybrid FES-exoskeleton system is comprised of two main

subsystems that provide actuation. The first subsystem, which

provides FES, is a transdermic electrical stimulation system (Trier

et al., 2001) which provides eight output channels of bipolar

stimulation. In this study, two channels are used for the elbow

flexion/extension joint, and two channels are used for the wrist

flexion/extension joint. To provide varying levels of output using

the FES subsystem, the amplitude and frequencies are kept at a

constant value for each channel, and the pulsewidth is varied.

The second subsystem is the robot, the MAHI Open

Exoskeleton (Dunkelberger et al., 2022a). This robot provides

four DOFs of movement support, namely elbow flexion/extension,

forearm pronation/supination, wrist flexion/extension, and wrist

radial/ulnar deviation, and each of these joints line up with

the equivalent anatomical degree of freedom of a person using

the exoskeleton. These will also be referred to by joint number

throughout this paper, which are joints 1–4, respectively. The

exoskeleton has an adjustable counterweight to account for varying

arm masses, an adjustable slider to account for varying forearm

lengths, and an adjustable shoulder abduction angle to keep the

participant comfortable. The counterweight and forearm slider

parameters are adjusted for each subject at the beginning of the

experiment, and locked for the experiment duration. This shoulder

abduction angle was kept at a value of 30◦ for all participants.

2.4. Methods

The study consists of several model characterization steps

related to each of the subsystems, followed by experimental testing

of the hybrid controller which makes use of these characterizations.

First, the electrodes are placed in appropriate locations, and

comfortable ranges of stimulation are found. Recruitment curves

are characterized for each set of electrodes to define the relationship

between commanded pulse width and muscle activation level.

Gaussian process regression models are created to characterize

torque output for each electrode based on the orientation of

the upper-limb. The mass properties of the participant’s arm are

then characterized so that a combined dynamic model can be

created for the arm-exoskeleton subsystem. The hybrid controller

is created using the characterizations of each of the components.

These characterization steps are more completely described in

Sections 2.4.1–2.4.5. The hybrid controller is then compared

against an exoskeleton alone controller in a scenario of following

two trajectories for each DOF.

In this study, the elbow flexion/extension and wrist

flexion/extension DOFs are tested independently. Each of the

experimental steps is performed with the elbow flexion/extension

joint and corresponding electrodes, followed by the wrist
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flexion/extension joint with corresponding electrodes. The

explanations that follow apply to both DOFs.

2.4.1. FES electrode placement
The experimental protocol began by placing the electrodes on

the participants. Each of the electrode pairs were placed and tested

one at a time. A set of electrodes was placed as agonist/antagonist

pairs for each of the active degrees of freedom. This means for

the elbow flexion/extension joint, one set of electrodes was placed

to target elbow flexion, and another set was placed to target

elbow extension using two inch square electrodes. For the wrist

flexion/extension joint, one set of electrodes was placed to target

wrist flexion, and another set of electrodes was placed to target wrist

extension using one inch round electrodes. Electrode placement

locations for each of these movements were chosen based on pilot

testing based on which locations could reliably provide the desired

movement. These general chosen locations are shown in Figure 2.

For the elbow flexion electrode placement, a reference electrode

was placed, and a Compex motor point pen was used to find a

specific point that generates biceps contraction, and the second

electrode was placed there. For the remaining electrodes, the pair

of electrodes were placed in a nominal location, and the pulse

width was increased slowly. The resulting movement with the

participant’s arm on a table was observed, and the electrodes

were adjusted if the desired movement was not produced. The

electrodes were then wrapped with medical bandage to ensure that

the electrodes stayed in the original location.

2.4.2. Threshold identification
Once the electrodes have been placed, the minimum and

maximum pulsewidth values that will be used for each participant

need to be identified. The robot and arm were moved to a neutral

configuration, and held there using independent PD controllers

on all joints. For each electrode placed, the minimum value that

produced a change in torque output in the PD controller is

considered the minimum pulse width value, pwmin. The discomfort

threshold is then found by increasing the pulsewidth until the

participant verbally indicates their maximum value which is still

comfortable. The maximum pulsewidth value used throughout

the experiment, pwmax, is taken as a slight reduction from the

discomfort threshold. A ramp from the pwmin to pwmax is then used

to verify that the participant remains comfortable throughout the

range, and that the pwmin is just below the threshold of providing

torque output.

2.4.3. Recruitment curve characterization
With the thresholds defined, a mathematical representation

between the pulsewidth range and muscle activation is found,

defined as a recruitment curve. Previous research has shown that

functional electrical stimulation produces a muscle recruitment

curve in the form of a sigmoid (Durfee and MacLean, 1989).

To characterize this recruitment curve, the robot is again moved

to a neutral configuration, and held there using independent

PD controllers on each joint. Each of the electrodes sequentially

performs four impulses at pwmax, followed by four linear ramps

between pwmin and pwmax, as shown in Figure 3.

The ramp deconvolutionmethod is used (Durfee andMacLean,

1989) with the input of pulsewidth values and the corresponding

torques generated from the stimulation to generate smooth curves

to be characterized. The sigmoid is then fitted using Equation 3

with free parameters of c1 and c2, where pw
∗ and pw∗

max are defined

as pulsewidths normalized so that a pw∗ value of 0, corresponds a

pwmin as defined in Equations 1, 2.

pw∗ = pw− pwmin (1)

pw∗
max = pwmax − pwmin (2)

α
∗ =

c1

1+ e−c2(pw∗−
pw∗max

2 )
−

c1

1+ e
c2pwmax

2

(3)

α =
α
∗

c1
(4)

This equation results in a sigmoid with a minimum value of 0

and amaximum value of c1. The term c2 is related to the slope of the

function as it crosses the midpoint. To turn this characterization

into the standard definition of a recruitment curve which varies

from 0 to 1, α
∗ is divided by c1 to arrive at an equation for

activation, α.

2.4.4. Gaussian process regression model creation
The last component needed to mathematically represent the

FES subsystem is a representation of the torque output based

on the arm joint configuration of the participant. A Gaussian

Process Regression (GPR) model is used to characterize this

relationship torque when each of the FES electrode pairs is at a

maximum activation as a function of the arm configuration. In

this case, the black-box representation of the GPR models also

implicitly capture some of the complex muscle dynamics. For

each of the degrees of freedom, eight evenly spaced positions

are taken between the minimum and maximum values that

each joint will see throughout the experiment. At each of

these positions, PD controllers on each of the individual robot

DOFs are used to keep the robot at the desired position. The

exoskeleton torque required to hold the pose when no muscles

are stimulated is recorded as τpassive. One electrode is increased

to its maximum activation, and the exoskeleton torque required

to hold that pose is recorded as τhold. We consider the difference

between the two values as the torque produced by the electrode

τrecord.

τrecord = τhold − τpassive (5)

The position tested and τrecord at that position are

saved as training data for the tested electrode. This is

repeated for the other electrode active for the current

DOF, and at each of the other positions, three times in a

randomized order. The collected training points are then

used to generate a GPR model for each electrode using

Matlab’s fitrgp function. An example of trained GPR

models for elbow flexion/extension torque output resulting
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FIGURE 2

(A) A participant with their arm in the robot in the experimental setup, with the axes of rotation for the active joints indicated by orange and red

arrows for the elbow flexion/extension and wrist flexion/extension joints respectively. (B) Placement of each of the four sets of electrodes. Electrodes

were placed over the biceps for elbow flexion over the triceps for elbow extension. Electrodes were placed on the flexor carpi ulnaris for wrist

flexion, and extensor carpi radialis longis and extensor carpi ulnaris muscles for wrist extension.

FIGURE 3

(Left) Profiles of commanded pulsewidths, and resulting torque outputs due to stimulation from the wrist extension electrode in the recruitment

curve characterization process. (Right) Resulting characterized recruitment curve in the form of a sigmoid based on the ramp deconvolved data.

from the elbow flexion and elbow extension electrodes for

a single subject is shown in Figure 4. This results in the

following equation

τfes = P(q)α (6)

where P(q) ∈ R
1×2 and where column i is an individual GPR

model that provides an estimated output torque when electrode set

i is at maximum stimulation, and the robot is at position q. Recall

that this is implemented for each joint separately, so there is one

P(q) that corresponds to the elbow flexion/extension joint and uses

the elbow flexion/extension position as an input, and one P(q) that

corresponds to the wrist flexion/extension joint and used the wrist

flexion/extension position as an input.

2.4.5. Arm model characterization
An accuratemodel of the dynamic system is needed for effective

MPC implementation. Previous work has developed a model of the

exoskeleton without an arm (Dunkelberger et al., 2022a). In this

study, an optimization problem was solved to find an estimate of

dynamic properties for the arm to be used with the exoskeleton

dynamic model, including masses, moments of inertia, and friction

components.

To add theese dynamic properties of the arm to the dynamic

model of the exoskeleton, each joint in the arm was assumed to be

a rigid body rigidly connected to the corresponding joint on the

exoskeleton. With this assumption, the mass of each arm joint can

be added to the mass of the robot joint, and the inertia of each arm

joint can be combined with the inertia of each robot joint using

the parallel axis theorem. While this study mainly focuses on the

impact on the elbow flexion/extension and wrist flexion/extension
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FIGURE 4

Fitted GPR models are shown along with data points used to fit the model for the elbow flexion/extension joint for the elbow flexion and elbow

extension electrode.

joints, this arm characterization process utilizes all four joints of the

exoskeleton to create a full dynamic model as shown in Equation 7,

which can then be reduced to the single-joint components for the

controller.

τ = M(q)q̈+ V(q, q̇)+ G(q)+ Ff(q̇) (7)

In Equation 7, τ ∈ R
4×1 is a vector consisting of the

torques at each joint. M ∈ R
4×4 is known as the mass matrix

and consists of different combinations of the mass and inertial

terms of each joint. V ∈ R
4×1 is the vector of centrifugal and

Coriolis terms. G ∈ R
4×1 is the gravity vector and gives the

affects of gravity on each joint, and Ff ∈ R
4×1 gives friction

on each joint. q is a vector of all joint positions, q̇ is a vector

of all joint velocities, and q̈ is a vector of all joint accelerations.

M, V, G, and Ff were calculated using the same methods as

previous work (Dunkelberger et al., 2022a), but with the combined

arm and robot properties serving as lumped parameters in the

formulation.

Equation 7 can be used to characterize the unknown arm

mass properties that appear in the equation, given experimentally

recorded values for τ , q, and q̇. To collect these data for

characterization, the user’s arm was placed inside the robot and

secured. A chirp signal was used as a position reference for

the wrist radial/ulnar deviation joint while the other three joints

were commanded to remain stationary using independent PD

controllers. This process was then repeated for each more proximal

joint. The torque required to complete the motions and the

resulting joint positions and velocities were recorded. The recorded

velocities were filtered, and a finite difference derivative was

calculated to approximate the accelerations. With these values,

the difference between the left side and right side of Equation 7,

recorded and calculated torques respectively, could be found given

a guess of mass properties. The difference between these two values

at every time step is the error in the dynamic model, and this

error was used as the optimization criteria to estimate the mass

properties of the arm when combined with the mass properties

of the exoskeleton found in previous work (Dunkelberger et al.,

2022a).

To keep the number of optimization variables small, the

problem was solved one joint at a time, starting with the most

distal joint, wrist radial/ulnar deviation. This joint was the first

to be optimized because for any given joint, only the more distal

joints impact the current mass property analysis. Each more

proximal joint was then optimized in order, ending with the

elbow flexion/extension joint. At each joint, the inertia about

the axis of rotation and the distances to the center of mass in

the other two axes were optimization variables. When running

the optimization on any joint except wrist radial/ulnar deviation,

the next distal joint’s distance to the center of mass along the

distal joint’s axis of rotation was also included as an optimization

variable. This was added because this value does not appear in

the calculations for the joint moving, but does impact the more

proximal joints. Lastly, two optimization variables were added

to each joint corresponding to the joint kinetic and viscous

friction, which were considered to be added to the coefficients

previously characterized for the exoskeleton by itself. A constant

mass was assumed for each joint because the mass only appears

multiplied by the distance to the center of mass terms. The
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TABLE 1 Holding position of inactive joints throughout testing.

Active joint qhold_1 qhold_2 qhold_3 qhold_4

Elbow F/E N/A 0◦ 0◦ 0◦

Wrist F/E –30◦ –30◦ N/A 0◦

formulation of this optimization problem can be seen in Equations

8, 9.

argmin
pd

ed =

M
∑

t=1

(τcalc_d_t − τmeas_d_t)
2 (8)

pd =

{

[

Iczz_d, rcx_d, rcy_d, rcx_d+1, Fk_d, Bd
]

if 1 ≤ d ≤ 3
[

Iczz_d, rcx_d, rcy_d, Fk_d, Bd,
]

if d = 4
(9)

In these equations, pd represents the vector of parameters for a

given joint, d. A d of 1 represents the elbow flexion/extension joint

and d = 4 being the wrist radial ulnar/deviation joint, ed refers to

the torque error between the calculated torque, τcalc, and measured

torque, τmeas, t represents a given time step up toM total time steps,

Iczz is the moment of inertia about the axis of rotation taken about

the center of mass, and rcx, rcy, and rcz represent the distance from

the axis of rotation to the center of mass in the x, y, and z directions

respectively.

The optimization problem was solved using fmincon in

Matlab, with initial guesses of zero for all optimization variables.

The optimal properties found using this method were combined

into the lumped arm and robot system used in the remainder of

this study.

2.5. Hybrid controller design

We first present the full four-DOF dynamics for the FES-

exoskeleton hybrid system, which we will then reduce to the single-

DOF dynamics for the control formulation. This is similar to the

dynamics of the robot and arm system in Equation 7, but the inputs

to the system arise from both the exoskeleton and the FES system,

so we separate the torque term into the two components.

τfes + τexo = M(q)q̈+ V(q, q̇)+ G(q)+ Ff(q̇) (10)

In this equation, τexo ∈ R
4×1 and τfes ∈ R

4×1 are torques

supplied along each of the robot joints due to robot torque outputs,

and torques provided by FES respectively.

As in the previous sections, the control problem will be

described once, but the equations presented apply to either the

elbow flexion/extension or the wrist flexion/extension DOF. To

limit the full dynamics in Equation 10 to analyze a single DOF with

the rest of the joints remaining stationary, all inactive joints can be

constrained such that qj = qhold_j, q̇j = 0, q̈j = 0 for all joints j

that are inactive. Here, qhold_j is the holding position of joint jwhen

it is inactive, as shown in Table 1. This results with the following

equation to describe the dynamics of a single DOF system, either in

the elbow flexion/extension or wrist flexion/extension case.

P(q)α + τexo_mpc = mq̈+ g sin(q− qeq)+ ff (q̇) (11)

For the DOF of interest, m represents the estimated lumped

inertia, g represents the gravitational effects, ff represents the

friction effects, and qeq represents the natural resting position of the

combined arm-robot system for the DOF of interest. In Equation

11, and throughout the remainder of the paper, all variables that

appear in equations are referring to a single DOF, and the values

of these variables are different in the elbow flexion/extension DOF

and the wrist flexion/extension DOF, but the symbolic expressions

apply to both DOFs. For example, when this equation is applied

to the elbow flexion/extension joint, q, q̇, and q̈ are the position,

velocity, and acceleration of the robot elbow flexion/extension

joint, and α is the vector [α1,α2]
T , which are the activation levels of

the electrodes placed to induce elbow flexion, and elbow extension.

To develop our control problem, we define the following

quantities as the system state, x, system output, y, and and control

input, u, where C is the output matrix describing the variables we

can observe.

x = [q, q̇]T (12)

C = I2 (13)

y = Cx (14)

u = [τexo_mpc,α1,α2]
T (15)

To use standard analysis techniques, we would like to have

our dynamics in the form of ẋ = f (x, u), which by definition

is the vector [q̇, q̈]T . By solving Equation 11 for q̈ as follows,

we can obtain an explicit definition for the representation of

f (x, u).

q̈ =
1

m
(P(q)α + τexo_mpc − g sin(q− qeq)− ff (q̇)) (16)

To implement real time control, it is beneficial to use

a linearized form of the dynamics to reduce computation

time. We can then convert the dynamics to a linearized form

by calculating the Jacobian of the dynamics about time k

with respect to the input and output. The following gives a

estimate for the dynamic equations at time i, linearized at

time k.

Ak =
∂f

∂x

∣

∣

∣

∣

x=xk ,u=uk

(17)

Bk =
∂f

∂u

∣

∣

∣

∣

x=xk ,u=uk

(18)

˙̄xi = Akxi+Bkui + ẋ|x=xk ,u=uk (19)

These linearized dynamics are then used in the MPC

formulation. The cost function is as follows, where

i represents a discrete point in time in the standard

MPC formulation.

Ji = (ri − ȳi)
TQ(ri − ȳi)+ 1uTi R1ui + uTi Rmui (20)

The matricesQ ∈ R
2×2, R ∈ R

3×3, and Rm ∈ R
3×3 are positive

diagonal matrices used to weight predicted trajectory error, control

input rate of change, and control input magnitude respectively.
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In this equation, the control input rate of change at timestep i is

defined as1ui = ui−ui−1. Initial values for these gains were chosen

based on pilot studies that provided desired behavior as described

below.

Q =

[

Qpos 0

0 Qvel

]

(21)

R =







Rexo 0 0

0 Rfes 0

0 0 Rfes






(22)

Rm =







Rm_exo 0 0

0 Rm_fes 0

0 0 Rm_fes






(23)

The general ideology behind the choice of gains in the hybrid

controller is as follows. The gains for Q represent the importance

for the controller to follow the desired trajectory, with higher gains

indicating better tracking, but less stable behavior if there are model

errors. The gains for Rm are chosen so that Rm_exo ≫ Rm_fes, which

is the main method by which the hybrid control strategy reduces

exoskeleton torque compared to a strategy which only uses an

exoskeleton. Additionally, these gains are chosen such that (ȳi −

ri)
TQ(ȳi−ri)≫uTi Rmui, so that trajectory accuracy is not sacrificed

to allow for overall torque reduction. The gains for R are chosen so

that Rfes ≫ Rexo so that the FES system, which has significant delay,

remains stable by mainly responding with low-frequency changes

in torque while the exoskeleton does mostly quick corrective

actions. This combination of chosen gains for R and Rm are

intended to have the general effect of the FES subsystem providing

low frequency, high amplitude torque, allowing it to provide a bulk

of the power requirement, yet maintain smooth motions despite

the time delay. The exoskeleton subsystem provides high frequency,

low amplitude torque, which provides necessary quick corrections

without requiring too much power consumption. As a reminder,

separate controllers are used for the elbow flexion/extension joint

and for the wrist flexion/extension joint, and the gains for each of

the two joints are created independently.

Because the Rfes and Rm_fes gains place costs on activation levels

rather than FES torque outputs, in some cases, it was necessary to

adjust these values for each participant upon initial testing with the

hybrid controller to account for variations in torque productions

for the same activation level. To account for this, when the hybrid

controller was first tested in the experiment, these gains were

increased by a factor of two from the original values if there was

oscillatory behavior, or decreased by a factor of two if activation

levels were lower than expected.

The final cost function used in the MPC implementation is as

follows.

argmin
u(·)

Jtot =

N
∑

i=1

Jk+i (24)

subject to ȳk+i+1 = ȳk+i + ˙̄xk+iTs,

0 ≤ αe ≤ 1, e = {1, 2}

In Equation 24, k represents the current point in time, and

future discretized timesteps at time k + i are Ts seconds apart,

for N time steps. The dynamics at these future time points

are approximated using Euler integration as shown by the fist

constraint on the optimization problem, with the bars representing

that these are estimated values. The second constraint restricts

the activation level, α, of each electrode, e, to fall between 0 and

1. An additional constraint could be implemented to limit the

maximum allowable exoskeleton torque; however, in this study,

the torque required from the exoskeleton always remained below

the maximum allowable torque, which meant that this constraint

did not need to be implemented. The result of the optimization

is u(·) which represents the optimal control inputs over the time

prediction horizon, uk+1, uk+2, ..., uk+N .

This MPC formulation is created in C++ using the nonlinear

optimization framework CasADi (Andersson et al., 2019). The

solver for the dynamic problem is compiled into a dll file which

can be loaded at runtime and interfaced with the Interior Point

Solver, IPOPT (Wächter and Biegler, 2006), to solve the MPC

problem. This MPC problem is solved as fast as possible in a

separate thread, and each time a solution is found, the solution

of the minimization, u(·), is sent to the main thread, where those

successive control solutions are used until the next solution is

found. From u, τexo_mpc is used directly, and α1 and α2 are

converted to pulsewidth commands to send to the stimulator using

Equation 4 which describes the recruitment curve.

To tune the gains for the MPC algorithm, Q and R were first

tuned to achieve smooth movements and low tracking error, with

Rm values kept at 0. Following this, the Rm gains were chosen

to achieve meaningful reduction in the exoskeleton torque, while

maintaining similar tracking accuracy. As Rm gains were tuned, Q

and R were further adjusted as necessary.

To account for model error in the MPC formulation, a PID

controller using only exoskeleton torque is implemented in parallel

as shown in Figure 5. This has the effect of allowing the MPC

portion to control most of the action, while still providing a high

accuracy on the resulting trajectory tracking. The torque provided

by the PID controller is defined as τexo_fb, and the gains for this

controller were chosen in pilot testing to achieve between 1 and

1.5◦ RMS tracking error. In the tuning of this controller, the

gains were slowly increased, and tuned only after fully tuning

the MPC system independently, so that the controller dynamics

achieved from the MPC algorithm were the driving component.

This additional controller does not change the output applied by the

FES subsystem, but the torque applied to the exoskeleton becomes

τexo_tot = τexo_mpc + τexo_fb (25)

To test the effectiveness of the hybrid controller design, it is

compared against a purely exoskeleton controller, defined as the

exoskeleton alone control case. In this test case, the same general

structure is used with the MPC controller paired with a PID

controller, but Equation 15 becomes

u = [τexo] (26)

which results in R and Rm being single values rather than matrices.
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FIGURE 5

Hybrid FES-exoskeleton control block diagram, showing how the di�erent components of the hybrid controller work together to provide torque

commands to the robot and pulse width commands to the stimulator given a desired input trajectory.

2.6. Experimental validation

After a participant completed each of the model

characterization steps and the MPC problem was generated,

the experimental validation was conducted. Participants were

assisted in completing two different trajectories in two different

conditions, using the hybrid controller that combined the FES

and exoskeleton action, and using the exoskeleton alone. The first

trajectory is referred to as the cup trajectory, and it is based on

a study that tracked healthy individuals’ joint-level movements

to move a cup to various target locations with differing grasps

(Valevicius et al., 2019). The movement profile for each of the

joints was taken independently and spaced so that it spanned

a useful and comfortable trajectory space for the exoskeleton

used in this study which was 30◦ flexed to 90◦ flexed from full

extension for elbow flexion/extension and 15◦ extended to 45◦

flexed for wrist flexion/extension. The cup trajectory is useful to

observe how the hybrid controller behaves when following natural

motions that would be expected under normal use. The second

trajectory is referred to as the sinusoidal trajectory, and it is an

artificially created trajectory that is the summation of multiple

sinusoidal waves at different amplitudes and frequencies. This

trajectory was created to test the controllers’ ability to generalize

to different movements. The trajectories are relatively similar in

terms of difficulty for the elbow flexion/extension joint, but the

wrist flexion/extension joint movement is significantly easier in

the cup trajectory than the sinusoidal trajectory. Both trajectories

take 42.4 s to complete, which is four times the time it took an

average able-bodied individual to complete the cup trajectory in

Valevicius et al. (2019). A four times reduction was chosen because

the original trajectory moved through the workspace very quickly,

and this reduction empirically felt an appropriate length to safely

perform movements with a human in the robot. Visualizations of

these trajectories are shown in the results in Figures 8, 9.

Each DOF was tested for ten trials on the cup trajectory, split

evenly between hybrid controller and exoskeleton alone controller,

and 10 trials on the sinusoidal trajectory, also split evenly between

hybrid controller and exoskeleton alone controller. While each

DOF was being tested, all other DOFs were kept at their qhold
values as shown in Table 1 using independent PD controllers

on those joints. Collection of the experimental data began by

running four elbow flexion/extension trials, consisting of one of

each possible combination of trajectory and controller type. This

was followed by four wrist flexion/extension trials, again consisting

of each possible combination of trajectory and controller. This

sequence was repeated until all 40 total trials had been collected.

Throughout each of the trials, position of the active DOF, total

exoskeleton torque commanded, and activation levels of electrodes

were collected at a rate of 1 kHz using a Quanser Q8-USB data

acquisition device.

Three of the nine participants repeated the entire protocol

(including characterization steps) at least 1 week after they

completed the first set of data collection. These data were collected

to provide insight into whether results remain similar between

sessions within the same participant, rather than only comparing

between participants.

2.7. Data analysis

The primary objective of these experiments is to understand the

extent to which exoskeleton power consumption can be reduced

in a hybrid system compared to a exoskeleton alone system. We

compare power consumption by taking the sum of the squared

total exoskeleton torque throughout the trajectory for each of the

conditions tested as shown in Equation 27, averaged across each of

the five trials with that set of conditions. This value is labeled as

τss_exo for the exoskeleton alone control condition, and τss_hybrid for

the hybrid control condition. Because participants have different

arm sizes, and require the robot to be in different configurations,

it is expected that participants will require different amounts of

sum of squared torque from the system to move through the

cup and sinusoidal trajectories. To normalize the data to compare

across subjects, the reduction in sum of squared torque in the

hybrid control case compared to the exoskeleton alone control case

is shown by Equation 28. This allows us to analyze the varying

power consumption both between exoskeleton alone and hybrid

controllers, as well as how the relative controller performance

translates between two different trajectories.

τss =

N
∑

i=1

τ
2
exo_tot (27)

%Imp = 100(1−
τss_exo − τss_hybrid

τss_exo
) (28)
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In Equation 27, N is the number of data points collected. With

this representation, a value of %Imp = 0 would represent equal

amounts of torque being used in both control cases, which would

indicate no improvement, a value of %Imp > 0 would indicate a

reduction in power consumption using the hybrid controller with

a value of %Imp = 100 indicating no exoskeleton power was

consumed, and a value of %Imp < 0 would indicate that the hybrid

controller required more exoskeleton power than the exoskeleton

alone case. A paired t-test was performed to understand whether

there was a statistically significant difference between in the sum

of squared torque in the exoskeleton alone control case, and in the

hybrid control case for each of the trajectories.

The secondary objective of these experiments is to understand

how the tracking accuracy compares when using the two options

for controllers. The RMS tracking error is calculated as

erms =

∑N
i=1

√

(yi − ri)2

N
(29)

A paired t-test was performed to understand whether there was

a statistically significant difference between the RMS errors in the

exoskeleton alone control case, and in the hybrid control case for

each of the trajectories.

One subject was unable to get any detectable torque output

from one of the electrodes on the wrist flexion/extension DOF,

and therefore, did not complete data collection for that DOF.

Because of this, there are nine sets of data analyzed for the elbow

flexion/extension results, and eight sets of data analyzed for the

wrist flexion/extension results.

3. Results

A summary of the sum of squared torque reduction findings

is presented in Figure 6 as boxplots with individual subject data

overlaid on top. These results show a mean sum of squared torque

reduction of 48.8 and 48.6% for the cup and sinusoidal trajectories

respectively for the elbow flexion/extension joint when comparing

the hybrid controller to the exoskeleton alone controller. These

values for individual participants spanned from 11.8 to 71.6%

for the cup trajectory, and from 8.8 to 77.2% for the sinusoidal

trajectory, with the lowest data point being an outlier. A mean

sum of squared torque reduction of 59.3 and 56.5% was shown

for the cup and sinusoidal trajectories respectively for the wrist

flexion/extension joint when comparing the hybrid controller

to the exoskeleton alone controller. These values for individual

participants spanned from 33.4 to 82.9% for the cup trajectory,

and from 39.3 to 79.0% for the sinusoidal trajectory. The statistical

tests showed that the sum of squared torques were significantly

lower in the hybrid control case compared to the exoskeleton alone

control case in both DOFs and in both trajectories, with p-values

being < 0.01 in both trajectories for the elbow flexion/extension

joint, and p-values being < 0.001 in both trajectories for the wrist

flexion/extension joint.

A summary of the trajectory tracking accuracy findings is

presented in Figure 7 as box plots with individual subject data

overlaid on top. For the elbow flexion/extension joint, mean

RMS errors in the cup trajectory were 1.04 and 1.24◦ for the

exoskeleton alone and hybrid controllers respectively. RMS errors

in the sinusoidal trajectory were 1.10 and 1.26◦ for the exoskeleton

alone and hybrid controllers respectively. These results indicate

that there is a mean increase of 0.18◦ in RMS error when using

the hybrid controller compared to using the exo alone controller

in the elbow flexion/extension joint. This difference was shown to

be statistically significant in the paired t-test, with p-values for each

of the trajectories < 0.01.

For the wrist flexion/extension joint, RMS errors in the cup

trajectory were 1.21 and 1.12◦ for the exoskeleton alone and

hybrid controllers respectively. RMS errors in the sinusoidal

trajectory were 1.53 and 1.48◦ for the exoskeleton alone and hybrid

controllers respectively. These results indicate that there is a mean

decrease of 0.07◦ in RMS error when using the hybrid controller

compared to using the exoskeleton alone controller in the wrist

flexion/extension joint. This difference was again shown to be

statistically significant in the paired t-test, with p-values for each

of the trajectories again remaining < 0.01.

Figures 8, 9 show time series representations of torque profiles

for the best performing subject (represented by the △ symbol in

Figures 6, 7) and movement profiles averaged across all subjects. In

the representative plots of torque profiles, the exoskeleton torque

used during the hybrid trials exhibits a smaller magnitude than

the exoskeleton torque used during exoskeleton alone trials. This

result shows that the hybrid controller is able to replace a significant

amount of the torque requirement from the exoskeleton with FES

torque. The plots for movement profiles demonstrate howwell each

of the controllers are able to track the trajectory. In all combinations

of trajectories and DOFs, the trajectories almost entirely overlap

each other, showing similar accuracy regardless of controller.

The reduction in maximum torque for the torque profile

averaged across participants profiles across participants is also

analyzed, for the hybrid controller compared to the exoskeleton

alone controller. For this metric, it is interesting to observe both the

change in maximum and minimum values, as many cable-driven

systems would likely require one actuator for each agonist and

antagonist pair. In the elbow flexion/extension DOF, the maximum

torque was reduced by 44.2 and 43.7% in the cup and sinusoidal

trajectories respectively, and the minimum torque for the mean

profile was reduced by 31 and 27.1% for the cup and sinusoidal

trajectories respectively. In the wrist flexion/extension DOF, the

maximum torque was reduced by 67.1 and 65.3% in the cup and

sinusoidal trajectories respectively, and the minimum torque for

the mean profile was reduced by 36.9 and 36.6% for the cup and

sinusoidal trajectories respectively.

4. Discussion

There is a need for devices to provide assistance in completing

activities of daily living for individuals with SCI. For this

population, return of upper-limb function is among their top

priorities (Anderson, 2004). Both FES and exoskeletons provide

some framework to assist with movement, but each of these

technologies has fundamental limitations preventing meaningful

assistance for the upper-limbs in activities of daily living. FES is

unable to provide accurate and repeatable movements by itself,

and using feedback control causes instability due to the inherent
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FIGURE 6

Sum of squared torque reduction results are shown for all subjects for each trajectory for the elbow flexion/extension DOF (left) and wrist

flexion/extension DOF (right). The overlaid scatterplot shows individual subject results, with the same symbol representing a single subject across

figures. Points in green show the repeated data collection for the first three subjects, but repeated data collection does not contribute to boxplot

presentation. The purple “∗” above the plots represents a that there was a statistically significant di�erence in the sum of squared torque between the

hybrid and exoskeleton alone control cases.

FIGURE 7

RMS error results are shown for all subjects for each trajectory and each controller type for the elbow flexion/extension DOF (left) and wrist

flexion/extension DOF (right). The overlaid scatterplot shows individual subject results, with the same symbol representing a single subject across

figures. Points in green show the repeated data collection for the first three subjects. The purple “∗” above the plots represents a that there was a

statistically significant di�erence in the RMS errors between the two control types.

time delays in muscle response to stimulation. Exoskeletons

are able to provide accurate and repeatable movements, but

require bulky systems and large amounts of power to support

upper-limb movements against gravity. In this paper, we have

proposed a hybrid FES-exoskeleton controller that combines the

two technologies, with the goal of reducing power consumption

compared to a robot alone, and providing accurate movement,

similar to that of an exoskeleton alone. This controller uses the
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FIGURE 8

Elbow flexion/extension joint exoskeleton torque profile for a single subject (top), and movement profiles averaged across subjects (bottom) are

shown for the two di�erent trajectories, cup (left) and sinusoidal (right). In the plots, the blue line represents data for the exoskeleton alone

controller, and the yellow line represents data for the hybrid controller.

FIGURE 9

Wrist flexion/extension joint exoskeleton torque profile from a single subject (top), and movement profiles averaged across subjects (bottom) are

shown for the two di�erent trajectories, cup (left) and sinusoidal (right). In the plots, the blue line represents data for the exoskeleton alone

controller, and the yellow line represents data for the hybrid controller.
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model predictive control cost function to leverage the strengths of

each of the subsystems, while minimizing the weaknesses of each.

4.1. Torque reduction

An average reduction of 48.7 and 57.9% of sum of squared

torque was found on the elbow flexion/extension and wrist

flexion/extension DOFs respectively with the use of the hybrid

controller compared to the exoskeleton alone controller. These

results in the EFE joint are an improvement over the 32.1%

reduction found in our previous implementation using only the cup

trajectory (Dunkelberger et al., 2022b). This improvement shows

that the inclusion of the feedback controller instead of using an

integral term, and the incorporation of a more sophisticated arm

model, resulted in greater benefits in this hybrid control scheme,

while even extending to more generalized trajectory cases. This

shows promise for meaningful power consumption reduction for a

hybrid system when comparing to an exoskeleton alone controller.

Practically, this could mean that a portable hybrid system could

be powered for roughly twice as long as an equivalent exoskeleton

alone system, given the same battery capacity. In the future, this

could lead to more portability and longevity in hybrid assistive

devices for impaired populations.

It is worth noting that while the participants are able-bodied

and can move their arm through the desired trajectories without

assistance, we should not expect to see a torque reduction of 100%.

With FES we often cannot achieve the full capabilities of the user’s

muscles, and in this study, many of the participants were not able

to produce the maximum required torque solely through FES, even

at maximum activation. Additionally, FES is known to not provide

accurate or repeatable movements by itself, so at a minimum, the

exoskeleton needs to provide corrective torques to account for these

inaccuracies.

The average reduction in minimum and maximum torques

shows potential for actuator sizes to be reduced while still achieving

the same resultantmotion, which would result in less bulky assistive

robotic systems. In the future, this could be more directly tested by

artificially limiting the maximum torque of the exoskeleton joints

to observe how the FES can make up for the lack of torque.

4.2. Accuracy

FES systems by themselves do not provide reliable repeatability

when trying to perform generalized movements. The goal of

hybrid FES and exoskeleton systems is to achieve trajectory-

following accuracies significantly better than FES systems by

themselves, ideally approaching accuracies that are achievable using

exoskeleton-alone systems. In the elbow flexion/extension joint,

the hybrid algorithm had on average 0.20 and 0.16◦ more RMS

tracking error on the cup and sinusoidal trajectories, respectively,

when comparing the hybrid controller to the exoskeleton alone

controller. While this was a decrease in accuracy, this still resulted

in a very similar motion over the trajectory, as shown in Figure 8.

To put this in perspective, for a forearm length of 30 cm, the

RMS error in positioning the wrist, given the error in angular

tracking, is∼1mm. For the wrist flexion/extension joint, the hybrid

controller had on average 0.09 and 0.05◦ less RMS tracking error

on the cup and sinusoidal trajectories, respectively. Again, while

there is a small decrease in accuracy, the resultant trajectories are

very similar, as shown in Figure 9. These results demonstrate that

the hybrid controller is able to achieve similar tracking accuracies

to the exoskeleton alone controller in both of the individual

DOFs.

It is worth noting the difference in tracking accuracy between

the cup and sinusoidal trajectories on the wrist flexion/extension

joint. Recall that the cup trajectory requires significantly less

movement, with an average velocity of 7.3 ◦/s compared to the

sinusoidal trajectory with an average velocity of 14.3 ◦/s. The

difference in difficulty between the trajectories is likely the cause for

more tracking error in the sinusoidal trajectory. Still, we see that the

general relationship of the hybrid controller having a 0.06◦ RMSE

improvement is similar to the 0.09 degree RMSE improvement on

the cup trajectory.

A benefit of the proposed control architecture is that the

feedback controller portion can be adjusted independently of

the model predictive control portion. This means that if a

specific movement needs high-precision, the gains of the feedback

controller can be modified in a straightforward manner to increase

accuracy, although it would result in an increase in exoskeleton

torque usage. Additionally, while this study focused on the

challenging task of tracking time-varying trajectories, it would

also be an interesting translation to modify the implementation to

achieve desired setpoint positions, where FES could be used for a

majority of the movement generation when it is far from the target,

and the exoskeleton could be used to fine-tune the position when it

is close to the desired setpoint.

4.3. Generalization across tasks

Many of the previous applications using FES for assistance

provide the stimulation using a pre-programmed profile for a

specific movement. An important feature of the proposed hybrid

controller is that it does not rely on knowing the desired trajectory

before use, and works with any given input trajectory. By testing

two different trajectories, we were able to observe how the

different outcome metrics varied in different movements. Tracking

performance across several tasks has been reported by a few studies

that use both FES and exoskeletons (Rohm et al., 2013; Memberg

et al., 2014; Ajiboye et al., 2017), but none of these studies use a

controller to distribute actuation between the two systems on the

same joint.

The sum of squared torque reduction was similar between the

two trajectories for both the elbow flexion/extension DOF and the

wrist flexion/extension DOF. Along with the means and ranges

being the same, the general spacing of the participants within the

range of results remained the same between the two trajectories.

This means that the benefits in power reduction did generalize

well to these different trajectories, and that users could expect

similar results on trajectories that require similar motions. It is

especially interesting that a similar level of sum of squared torque

reduction was found on the two different trajectories for the wrist

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127783
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Dunkelberger et al. 10.3389/fnbot.2023.1127783

FIGURE 10

The maximum absolute values of the GPR predictions throughout the workspace for all participants are shown for each electrode, and for each DOF.

This represents how di�erent participants are able to achieve di�erent levels of torque from FES when the participant is receiving maximum

stimulation. The symbols here correspond to the same symbols from Figures 6, 7.

flexion/extension joint, especially because one of the trajectories

was significantly more challenging than the other.

While the elbow flexion/extension DOF saw similar tracking

accuracies in the two different trajectories when comparing

the two controllers, the wrist flexion/extension DOF did see a

difference in trajectory tracking accuracy on the two different

trajectories. Despite this, the relationship between the exoskeleton-

alone tracking accuracy and the hybrid tracking accuracy remained

similar in all cases, with the elbow flexion/extension DOF showing

average increase of 19.2 and 14.5% in RMS error on the cup and

sinusoidal trajectories respectively, and the wrist flexion/extension

DOF showing average reduction of 7.4 and 3.3% on the cup and

sinusoidal trajectories respectively.

While not implemented in this paper, another benefit of this

proposed controller is the ability to intuitively adjust controller

behavior to generalize to different objectives of movement. If a

specific task requires high precision in a movement, the gains

of the Q matrix or feedback could be increased to favor more

accurate movement at a cost of more torque. If there is an onset

of fatigue, the weights of the Rm matrix can be adjusted to prefer

more exoskeleton torque, and allow the muscles to recover.

4.4. Consistency across participants

While the results between trajectories were consistent within

participants, there is a significant distribution of results between

participants, especially for the sum of squared torque reduction

observed for the hybrid controller compared to the exoskeleton

alone controller. Even though all results showed improvement,

except for the single participant who could not achieve an FES

response in one of the wrist flexion/extension electrodes, some

participants had significantly better results than others. There are

many factors that can impact the effectiveness of FES, including

electrode placement, size of muscles, body fat levels, and fatigue,

many of which are not modifiable. These variations in ability to

produce torques due to FES can be visualized across participants

in Figure 10, where the maximum absolute value that the GPR

model predicts that each participant can produce throughout the

workspace is shown. We can see that there are wide variations in

the predicted amount of FES torque production. As an example,

one participant cannot producemore than about 0.25 Nm of torque

throughout the entire workspace with either the elbow flexion or

elbow extension electrodes, but two other participants can produce

more than 3 Nm in both of these cases. With these differences

in mind, it is clear that some participants would never be able to

achieve high reductions in power consumption with this hybrid

control approach. To increase consistency between participants, it

would be interesting to test with implanted FES systems, which are

more reliable and targeted, and to model fatigue, which can help

modify the controller in real-time to account for it.

When observing the results of the three participants who

performed the same protocol twice separated by at least a

week, we see that the results remained similar between the

two time points. The difference between sessions in sum of

squared torque reduction when comparing the hybrid controller

to the exoskeleton alone controller remained within 17% across

participants for the elbow flexion/extension DOF, and below

10% for the wrist flexion/extension DOF. The difference between

sessions in RMS tracking error for the hybrid controller compared

to the exoskeleton alone controller remained below 7% across

participants for the elbow flexion/extension DOF, and below

12% on the wrist flexion/extension DOF. It is encouraging that

even though it is difficult to generalize across participants, these

preliminary repeatability results seem to indicate that results

hold steady within users if the same implementation procedure

is followed during each use. It is important to note here

that the participants repeated the entire protocol, and it is

expected that the model that the FES production will change

(especially when using surface electrodes), meaning that the model
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will necessarily have to be tuned for each use, even for the

same participant.

One factor of this controller implementation that does not

generalize across participants is that it relies on the relative

weighting between exoskeleton torque inputs and FES activation

levels. While the exoskeleton torque outputs are relatively

consistent across participants, the activation levels do not map

directly to torque outputs, because each participant produces a

different amount of torque, given an activation level. In this case,

the Rfes and Rm_fes parameters as defined in Equations 22, 23 must

be scaled for each participant, based on the torque outputs expected

from the GPR models. However, once the parameters are scaled

once they should only need to be modified if electrodes need to be

moved, or if fatigue occurs.

One participant had a particularly weak response to the

FES, with a very low response from the elbow flexion/extension

electrodes, and no response from the wrist flexion/extension

electrodes. This difference compared to the remainder of

participants shows the importance in characterizing each

individual’s FES behavior to understand the potential effectiveness

of using the proposed hybrid controller.

4.5. Future work

An area of interest in observing the behavior of hybrid

systems would be to identify how maximum torque allowed by

the exoskeleton changes the resulting behavior in terms of torque

output and tracking error. We observed the maximum torque used

by the exoskeleton in this study, but it was not limited in any

particular way to influence controller behavior. We should expect

the controllers to behave differently if the maximum torques are

limited at the start, as the future-looking MPC controller is able to

predict a torque limit onset and proactively compensate for it.

Modeling of fatigue is another area of interest when using FES,

and has received much attention in the FES research community.

While this study aimed to keep the stimulation time to a minimum

to reduce the effects of fatigue, there were likely at least some effects

of fatigue present in results. Modeling and compensating for fatigue

would be a meaningful addition to the hybrid controller to see

improved performance.

The overall results from this study show promise for power

reduction while maintaining high accuracy when performing

movements with a single-DOF through the implementation of the

hybrid FES-exoskeleton controller. Importantly, these algorithms

should translate to a multi-DOF use case with only small

modifications. To realize truly shared control for generalized

upper-limb movements, these algorithms should be tested in

multi-DOF circumstances to understand potential benefits and

complications in this scenario.

5. Conclusion

In this paper, we presented a model-based control approach to

hybrid FES-exoskeleton control. We experimentally demonstrated

the benefits of using this model-based controller to distribute robot

and FES contributions to control elbow and wrist movements with

a hybrid FES-exoskeleton system. This control strategy reduced

exoskeleton torque for the hybrid system with similar tracking

accuracy compared to using the exoskeleton alone. To realize

practical implementation of hybrid FES-exoskeleton systems, the

control strategy requires translation to multi-DoF movements,

achieving more consistent improvement across participants, and

balancing control to more fully leverage the muscles’ capabilities.
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