185 research outputs found

    Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts.

    Get PDF
    Cellular protein-RNA complexes assemble on nascent transcripts, but methods to observe transcription and protein binding in real time and at physiological concentrations are not available. Here, we report a single-molecule approach based on zero-mode waveguides that simultaneously tracks transcription progress and the binding of ribosomal protein S15 to nascent RNA transcripts during early ribosome biogenesis. We observe stable binding of S15 to single RNAs immediately after transcription for the majority of the transcripts at 35 °C but for less than half at 20 °C. The remaining transcripts exhibit either rapid and transient binding or are unable to bind S15, likely due to RNA misfolding. Our work establishes the foundation for studying transcription and its coupled co-transcriptional processes, including RNA folding, ligand binding, and enzymatic activity such as in coupling of transcription to splicing, ribosome assembly or translation

    Chronic intrahippocampal interleukin-1β overexpression in adolescence impairs hippocampal neurogenesis but not neurogenesis-associated cognition

    Get PDF
    Both neuroinflammation and adult hippocampal neurogenesis (AHN) are implicated in many neurodegenerative disorders as well as in neuropsychiatric disorders, which often become symptomatic during adolescence. A better knowledge of the impact that chronic neuroinflammation has on the hippocampus during the adolescent period could lead to the discovery of new therapeutics for some of these disorders. The hippocampus is particularly vulnerable to altered concentrations of the pro-inflammatory cytokine interleukin-1β (IL-1β), with elevated levels implicated in the aetiology of neurodegenerative disorders such as Alzheimer’s and Parkinson’s, and stress-related disorders such as depression. The effect of acutely and chronically elevated concentrations of hippocampal IL-1β have been shown to reduce AHN in adult rodents. However, the effect of exposure to chronic overexpression of hippocampal IL-1β during adolescence, a time of increased vulnerability, hasn’t been fully interrogated. Thus, in this study we utilized a lentiviral approach to induce chronic overexpression of IL-1β in the dorsal hippocampus of adolescent male Sprague Dawley rats for 5 weeks, during which time its impact on cognition and hippocampal neurogenesis were examined. A reduction in hippocampal neurogenesis was observed along with a reduced level of neurite branching on hippocampal neurons. However, there was no effect of IL-1β overexpression on performance in pattern separation, novel object recognition or spontaneous alternation in the Y maze. Our study has highlighted that chronic IL-1β overexpression in the hippocampus during the adolescent period exerts a negative impact on neurogenesis independent of cognitive performance, and suggests a degree of resilience of the adolescent hippocampus to inflammatory insult

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    The Function Biomedical Informatics Research Network Data Repository

    Get PDF
    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical datasets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 dataset consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 Tesla scanners. The FBIRN Phase 2 and Phase 3 datasets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN’s multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data

    Inclusion of MUC1 (Ma695) in a panel of immunohistochemical markers is useful for distinguishing between endocervical and endometrial mucinous adenocarcinoma*

    Get PDF
    BACKGROUND: Distinguishing endocervical adenocarcinoma (ECA) from endometrial mucinous adenocarcinoma (EMMA) is clinically significant in view of the differences in their management and prognosis. In this study, we used a panel of tumor markers to determine their ability to distinguish between primary endocervical adenocarcinoma and primary endometrial mucinous adenocarcinoma. METHODS: Immunohistochemistry using monoclonal antibodies to MUC1 (Ma695), p16, estrogen receptor (ER), progesterone receptor (PR), and vimentin, was performed to examine 32 cases, including 18 EMMAs and 14 ECAs. For MUC1, cases were scored based on the percentage of staining pattern, apical, apical and cytoplasmic (A/C), or negative. For p16, cases were scored based on the percentage of cells stained. For the rest of the antibodies, semiquantitative scoring system was carried out. RESULTS: For MUC1, majority of EMMA (14 of 18 cases, 78%) showed A/C staining, whereas only few ECA (2 of 14, 14%) were positive. The difference of MUC1 expression in the two groups of malignancy was statistically significant (p < 0.001). Staining for p16 was positive in 10 of 14 (71%) ECA and 4 of 18 (22%) EMMA. Estrogen receptor was positive in 3 of 14 (21%) ECA and 17 of 18 (94%) EMMA. Progesterone receptor was positive in 3 of 14 (21%) ECA and 16 of 18 (89%) EMMA. Vimentin was positive in 1 of 14 (7%) ECA, and 9 of 18 (50%) EMA, with median and range of 0 (0–6), and 1.5 (0–9) respectively. CONCLUSION: A panel of immunohistochemical markers including MUC1, p16, ER, PR, and vimentin is recommended, when there is morphological and clinical doubt as to the primary site of endocervical or endometrial origin

    Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication

    Get PDF
    Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called “zygomycetes,” R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99–880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin–proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14α-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments

    Differences in carotid arterial morphology and composition between individuals with and without obstructive coronary artery disease: A cardiovascular magnetic resonance study

    Get PDF
    Objective: We sought to determine differences with cardiovascular magnetic resonance (CMR) in the morphology and composition of the carotid arteries between individuals with angiographically-defined obstructive coronary artery disease (CAD, = 50% stenosis, cases) and those with angiographically normal coronaries (no lumen irregularities, controls). Methods and results: 191 participants (50.3% female; 50.8% CAD cases) were imaged with a multi-sequence, carotid CMR protocol at 1.5T. For each segment of the carotid, lumen area, wall area, total vessel area (lumen area + wall area), mean wall thickness and the presence or absence of calcification and lipid-rich necrotic core were recorded bilaterally. In male CAD cases compared to male controls, the distal bulb had a significantly smaller lumen area (60.0 [plus or minus] 3.1 vs. 79.7 [plus or minus] 3.2 mm[super]2, p less than 0.001) and total vessel area (99.6 [plus or minus] 4.0 vs. 119.8 [plus or minus] 4.1 mm[super]2; p less than 0.001), and larger mean wall thickness (1.25 [plus or minus] 0.03 vs. 1.11 [plus or minus] 0.03 mm; p = 0.002). Similarly, the internal carotid had a smaller lumen area (37.5 [plus or minus] 1.8 vs. 44.6 [plus or minus] 1.8 mm[super]2; p = 0.006) and smaller total vessel area (64.0 [plus or minus] 2.3 vs. 70.9 [plus or minus] 2.4 mm[super]2; p = 0.04). These metrics were not significantly different between female groups in the distal bulb and internal carotid or for either gender in the common carotid. Male CAD cases had an increased prevalence of lipid-rich necrotic core (49.0% vs. 19.6%; p = 0.003), while calcification was more prevalent in both male (46.9% vs. 17.4%; p = 0.002) and female (33.3% vs. 14.6%; p = 0.031) CAD cases compared to controls. Conclusion: Males with obstructive CAD compared to male controls had carotid bulbs and internal carotid arteries with smaller total vessel and lumen areas, and an increased prevalence of lipid-rich necrotic core. Carotid calcification was related to CAD status in both males and females. Carotid CMR identifies distinct morphological and compositional differences in the carotid arteries between individuals with and without angiographically-defined obstructive CAD.Carotid Atherosclerosis (MRI) Progression Study (CAMPS, HL076378) and Cardiovascular Research Training Program (T-32, HL07838); and the General Clinical Research Center at the Wake Forest University School of Medicine (M01 RR-07122)

    Bone Marrow Osteoblast Damage by Chemotherapeutic Agents

    Get PDF
    Hematopoietic reconstitution, following bone marrow or stem cell transplantation, requires a microenvironment niche capable of supporting both immature progenitors and stem cells with the capacity to differentiate and expand. Osteoblasts comprise one important component of this niche. We determined that treatment of human primary osteoblasts (HOB) with melphalan or VP-16 resulted in increased phospho-Smad2, consistent with increased TGF-β1 activity. This increase was coincident with reduced HOB capacity to support immature B lineage cell chemotaxis and adherence. The supportive deficit was not limited to committed progenitor cells, as human embryonic stem cells (hESC) or human CD34+ bone marrow cells co-cultured with HOB pre-exposed to melphalan, VP-16 or rTGF-β1 had profiles distinct from the same populations co-cultured with untreated HOB. Functional support deficits were downstream of changes in HOB gene expression profiles following chemotherapy exposure. Melphalan and VP-16 induced damage of HOB suggests vulnerability of this critical niche to therapeutic agents frequently utilized in pre-transplant regimens and suggests that dose escalated chemotherapy may contribute to post-transplantation hematopoietic deficits by damaging structural components of this supportive niche
    corecore