8 research outputs found

    A Multi-site Resting State fMRI Study on the Amplitude of Low Frequency Fluctuations in Schizophrenia

    Get PDF
    Background: This multi-site study compares resting state fMRI amplitude of low frequency fluctuations (ALFF) and fractional ALFF (fALFF) between patients with schizophrenia (SZ) and healthy controls (HC). Methods: Eyes-closed resting fMRI scans (5:38 min; n = 306, 146 SZ) were collected from 6 Siemens 3T scanners and one GE 3T scanner. Imaging data were pre-processed using an SPM pipeline. Power in the low frequency band (0.01–0.08 Hz) was calculated both for the original pre-processed data as well as for the pre-processed data after regressing out the six rigid-body motion parameters, mean white matter (WM) and cerebral spinal fluid (CSF) signals. Both original and regressed ALFF and fALFF measures were modeled with site, diagnosis, age, and diagnosis × age interactions. Results: Regressing out motion and non-gray matter signals significantly decreased fALFF throughout the brain as well as ALFF in the cortical edge, but significantly increased ALFF in subcortical regions. Regression had little effect on site, age, and diagnosis effects on ALFF, other than to reduce diagnosis effects in subcortical regions. There were significant effects of site across the brain in all the analyses, largely due to vendor differences. HC showed greater ALFF in the occipital, posterior parietal, and superior temporal lobe, while SZ showed smaller clusters of greater ALFF in the frontal and temporal/insular regions as well as in the caudate, putamen, and hippocampus. HC showed greater fALFF compared with SZ in all regions, though subcortical differences were only significant for original fALFF. Conclusions: SZ show greater eyes-closed resting state low frequency power in frontal cortex, and less power in posterior lobes than do HC; fALFF, however, is lower in SZ than HC throughout the cortex. These effects are robust to multi-site variability. Regressing out physiological noise signals significantly affects both total and fALFF measures, but does not affect the pattern of case/control differences

    The Function Biomedical Informatics Research Network Data Repository

    Get PDF
    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical datasets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 dataset consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 Tesla scanners. The FBIRN Phase 2 and Phase 3 datasets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN’s multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data

    Neuropsychological profile in adult schizophrenia measured with the CMINDS

    Get PDF
    Schizophrenia neurocognitive domain profiles are predominantly based on paper-and-pencil batteries. This study presents the first schizophrenia domain profile based on the Computerized Multiphasic Interactive Neurocognitive System (CMINDS®). Neurocognitive domain z-scores were computed from computerized neuropsychological tests, similar to those in the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB), administered to 175 patients with schizophrenia and 169 demographically similar healthy volunteers. The schizophrenia domain profile order by effect size was Speed of Processing (d=−1.14), Attention/Vigilance (d=−1.04), Working Memory (d=−1.03), Verbal Learning (d=−1.02), Visual Learning (d=−0.91), and Reasoning/Problem Solving (d=−0.67). There were no significant group by sex interactions, but overall women, compared to men, showed advantages on Attention/Vigilance, Verbal Learning, and Visual Learning compared to Reasoning/Problem Solving on which men showed an advantage over women. The CMINDS can readily be employed in the assessment of cognitive deficits in neuropsychiatric disorders; particularly in large-scale studies that may benefit most from electronic data capture

    Gene discovery through imaging genetics : identification of two novel genes associated with schizophrenia

    No full text
    We have discovered two genes, RSRC1 and ARHGAP18, associated with schizophrenia and in an independent study provided additional support for this association. We have both discovered and verified the association of two genes, RSRC1 and ARHGAP18, with schizophrenia. We combined a genome-wide screening strategy with neuroimaging measures as the quantitative phenotype and identified the single nucleotide polymorphisms (SNPs) related to these genes as consistently associated with the phenotypic variation. To control for the risk of false positives, the empirical P-value for association significance was calculated using permutation testing. The quantitative phenotype was Blood-Oxygen-Level Dependent (BOLD) Contrast activation in the left dorsal lateral prefrontal cortex measured during a working memory task. The differential distribution of SNPs associated with these two genes in cases and controls was then corroborated in a larger, independent sample of patients with schizophrenia (n = 82) and healthy controls (n = 91), thus suggesting a putative etiological function for both genes in schizophrenia. Up until now these genes have not been linked to any neuropsychiatric illness, although both genes have a function in prenatal brain development. We introduce the use of functional magnetic resonance imaging activation as a quantitative phenotype in conjunction with genome-wide association as a gene discovery tool
    corecore