146 research outputs found

    Re-Evaluation of the UK’s HFC-134a Emissions Inventory Based on Atmospheric Observations

    Get PDF
    Independent verification of national greenhouse gas inventories is a vital measure for cross-checking the accuracy of emissions data submitted to the United Nations Framework Convention on Climate Change (UNFCCC). We infer annual UK emissions of HFC-134a from 1995 to 2012 using atmospheric observations and an inverse modeling technique, and compare with the UK’s annual UNFCCC submission. By 2010, the inventory is almost twice as large as our estimates, with an “emissions gap” equating to 3.90 (3.20–4.30) Tg CO<sub>2</sub>e. We evaluate the RAC (Refrigeration and Air-Conditioning) model, a bottom up model used to quantify UK emissions from refrigeration and air-conditioning sectors. Within mobile air-conditioning (MAC), the largest RAC sector and most significant UK source (59%), we find a number of assumptions that may be considered oversimplistic and conservative; most notably the unit refill rate. Finally, a Bayesian approach is used to estimate probable inventory inputs required for minimization of the emissions discrepancy. Our top-down estimates provide only a weak constraint on inventory model parameters and consequently, we are unable to suggest discrete values. However, a significant revision of the MAC servicing rate, coupled with a reassessment of non-RAC aerosol emissions, are required if the discrepancy between methods is to be reduced

    Testosterone causes both prosocial and antisocial status-enhancing behaviors in human males

    Get PDF
    Although popular discussion of testosterone’s influence on males often centers on aggression and antisocial behavior, contemporary theorists have proposed that it instead enhances behaviors involved in obtaining and maintaining a high social status. Two central distinguishing but untested predictions of this theory are that testosterone selectively increases status-relevant aggressive behaviors, such as responses to provocation, but that it also promotes nonaggressive behaviors, such as generosity toward others, when they are appropriate for increasing status. Here, we tested these hypotheses in healthy young males by injecting testosterone enanthate or a placebo in a double-blind, between-subjects, randomized design (n = 40). Participants played a version of the Ultimatum Game that was modified so that, having accepted or rejected an offer from the proposer, participants then had the opportunity to punish or reward the proposer at a proportionate cost to themselves. We found that participants treated with testosterone were more likely to punish the proposer and that higher testosterone levels were specifically associated with increased punishment of proposers who made unfair offers, indicating that testosterone indeed potentiates aggressive responses to provocation. Furthermore, when participants administered testosterone received large offers, they were more likely to reward the proposer and also chose rewards of greater magnitude. This increased generosity in the absence of provocation indicates that testosterone can also cause prosocial behaviors that are appropriate for increasing status. These findings are inconsistent with a simple relationship between testosterone and aggression and provide causal evidence for a more complex role for testosterone in driving status-enhancing behaviors in males

    Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere

    Get PDF
    Perfluorocarbons (PFCs) are potent greenhouse gases with global warming potentials up to several thousand times greater than CO2 on a 100-year time horizon. The lack of any significant sinks for PFCs means that they have long atmospheric lifetimes of the order of thousands of years. Anthropogenic production is thought to be the only source for most PFCs. Here we report an update on the global atmospheric abundances of the following PFCs, most of which have for the first time been analytically separated according to their isomers: c-octafluorobutane (c-C4F8), n-decafluorobutane (n-C4F10), n-dodecafluoropentane (n-C5F12), n-tetradecafluorohexane (n-C6F14), and n-hexadecafluoroheptane (n-C7F16). Additionally, we report the first data set on the atmospheric mixing ratios of perfluoro-2-methylpentane (i-C6F14). The existence and significance of PFC isomers have not been reported before, due to the analytical challenges of separating them. The time series spans a period from 1978 to the present. Several data sets are used to investigate temporal and spatial trends of these PFCs: time series of air samples collected at Cape Grim, Australia, from 1978 to the start of 2018; a time series of air samples collected between July 2015 and April 2017 at Tacolneston, UK; and intensive campaign-based sampling collections from Taiwan. Although the remote “background” Southern Hemispheric Cape Grim time series indicates that recent growth rates of most of these PFCs are lower than in the 1990s, we continue to see significantly increasing mixing ratios that are between 6 % and 27 % higher by the end of 2017 compared to abundances measured in 2010. Air samples from Tacolneston show a positive offset in PFC mixing ratios compared to the Southern Hemisphere baseline. The highest mixing ratios and variability are seen in air samples from Taiwan, which is therefore likely situated much closer to PFC sources, confirming predominantly Northern Hemispheric emissions for most PFCs. Even though these PFCs occur in the atmosphere at levels of parts per trillion molar or less, their total cumulative global emissions translate into 833 million metric tonnes of CO2 equivalent by the end of 2017, 23 % of which has been emitted since 2010. Almost two-thirds of the CO2 equivalent emissions within the last decade are attributable to c-C4F8, which currently also has the highest emission rates that continue to grow. Sources of all PFCs covered in this work remain poorly constrained and reported emissions in global databases do not account for the abundances found in the atmosphere

    Emissions of carbon tetrachloride from Europe

    Get PDF
    Carbon tetrachloride (CCl4) is a long-lived radiatively active compound with the ability to destroy stratospheric ozone. Due to its inclusion in the Montreal Protocol on Substances that Deplete the Ozone Layer (MP), the last two decades have seen a sharp decrease in its large-scale emissive use with a consequent decline in its atmospheric mole fractions. However, the MP restrictions do not apply to the use of carbon tetrachloride as feedstock for the production of other chemicals, implying the risk of fugitive emissions from the industry sector. The occurrence of such unintended emissions is suggested by a significant discrepancy between global emissions as derived from reported production and feedstock usage (bottom-up emissions), and those based on atmospheric observations (top-down emissions). In order to better constrain the atmospheric budget of carbon tetrachloride, several studies based on a combination of atmospheric observations and inverse modelling have been conducted in recent years in various regions of the world. This study is focused on the European scale and based on long-term high-frequency observations at three European sites, combined with a Bayesian inversion methodology. We estimated that average European emissions for 2006–2014 were 2.2 (± 0.8) Gg yr−1, with an average decreasing trend of 6.9 % per year. Our analysis identified France as the main source of emissions over the whole study period, with an average contribution to total European emissions of approximately 26 %. The inversion was also able to allow the localisation of emission "hot spots" in the domain, with major source areas in southern France, central England (UK) and Benelux (Belgium, the Netherlands, Luxembourg), where most industrial-scale production of basic organic chemicals is located. According to our results, European emissions correspond, on average, to 4.0 % of global emissions for 2006–2012. Together with other regional studies, our results allow a better constraint of the global budget of carbon tetrachloride and a better quantification of the gap between top-down and bottom-up estimates

    Abrupt reversal in emissions and atmospheric abundance of HCFC-133a (CF3CH2Cl)

    Get PDF
    Hydrochlorofluorocarbon HCFC-133a (CF3CH2Cl) is an anthropogenic compound whose consumption for emissive use is restricted under the Montreal Protocol. A recent study showed rapidly increasing atmospheric abundances and emissions. We report that, following this rise, the at- mospheric abundance and emissions have declined sharply in the past three years. We find a Northern Hemisphere HCFC-133a increase from 0.13 ppt (dry air mole fraction in parts-per-trillion) in 2000 to 0.50 ppt in 2012–mid-2013 followed by an abrupt reversal to 0.44 ppt by early 2015. Global emissions derived from these observations peaked at 3.1 kt in 2011, followed by a rapid decline of 0.5 kt yr−2 to 1.5 kt yr−1 in 2014. Sporadic HCFC-133a pollution events are detected in Europe from our high-resolution HCFC-133a records at three European stations, and in Asia from sam- ples collected in Taiwan. European emissions are estimated to be <0.1 kt yr−1 although emission hotspots were identi- fied in France
    corecore