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ABSTRACT: Independent verification of national greenhouse
gas inventories is a vital measure for cross-checking the
accuracy of emissions data submitted to the United Nations
Framework Convention on Climate Change (UNFCCC). We
infer annual UK emissions of HFC-134a from 1995 to 2012
using atmospheric observations and an inverse modeling
technique, and compare with the UK’s annual UNFCCC
submission. By 2010, the inventory is almost twice as large as
our estimates, with an “emissions gap” equating to 3.90 (3.20—
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4.30) Tg CO,e. We evaluate the RAC (Refrigeration and Air-Conditioning) model, a bottom up model used to quantify UK
emissions from refrigeration and air-conditioning sectors. Within mobile air-conditioning (MAC), the largest RAC sector and
most significant UK source (59%), we find a number of assumptions that may be considered oversimplistic and conservative;
most notably the unit refill rate. Finally, a Bayesian approach is used to estimate probable inventory inputs required for
minimization of the emissions discrepancy. Our top-down estimates provide only a weak constraint on inventory model
parameters and consequently, we are unable to suggest discrete values. However, a significant revision of the MAC servicing rate,
coupled with a reassessment of non-RAC aerosol emissions, are required if the discrepancy between methods is to be reduced.

B INTRODUCTION

As a result of the Montreal Protocol on Substances that
Deplete the Ozone Layer and subsequent amendments,' > the
production and consumption of ozone-depleting chlorofluor-
ocarbons (CFCs), and their interim replacements hydro-
fluorochlorocarbons (HCFCs), is now prohibited in Annex 1
nations for all dispersive nonessential use. As a direct
consequence, emissions of the third generation of fluorinated
compounds, hydrofluorocarbons (HFCs), have risen dramati-
cally.* Owing to an absence of chlorine, HFCs do not
appreciably deplete stratospheric ozone.” However, long
atmospheric lifetimes and strong infrared absorption profiles
make them potent greenhouse gases. Typically, these gases
have global warming potentials (GWP) many thousands of
times greater than CO,. As a result, HFCs were included within
the Kyoto basket of greenhouse gases (GHGs), defined as one
of six key groups of species deemed to have an adverse effect on
global climate. According to a recent study by Rigby et al,”
HECs accounted for 6% of radiative forcing incurred as a result
of synthetic greenhouse gas emissions in 2012. By 2050,
Velders et al.’ estimate that HFC emissions may be equivalent
to 9—19% of global CO, emissions in a business-as-usual
scenario.

With a 2014 global mole fraction of 77.9 ppt,* HFC-134a
(C,H,F,) is the most abundant HFC in the global atmosphere.
Due to the strength of sources above the equator, the Northern
Hemispheric abundance is significantly higher, at 83.0 ppt.
HFC-134a is a strong absorber of infrared radiation, with a
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GWP of 1300 (100-year time horizon).” In the UK, its
predominant use is as a coolant in refrigeration systems and in
particular, it is the refrigerant of choice for mobile air-
conditioning (MAC) units of the type typically found in
noncommercial vehicles.

As signatories to the Kyoto protocol, the UK must report
annual emissions of HFC-134a to the UNFCCC.® These
annual estimates are constructed using a bottom-up approach.
In each emitting sector, the magnitude of the bank (product of
the total number of sources and the average source unit
volume), usually referred to as “activity data”, is multiplied by
an emissions factor and aggregated to generate a national
estimate. However, bottom-up methods are subject to
uncertainty.” Each sector is defined by three factors,
representing the three key emissive stages in a products
lifetime: manufacture, operation and disposal. At each loss
stage, this factor is calculated as an average of the entire source
sector and consequently, the resulting figure is often a disparate
aggregation of local statistics scaled-up to national level. The
complex nature of each refrigeration sector results in a number
of assumptions being made, including unit lifetime and service
rate, all of which increase the uncertainty of the final estimate.
Consequently, independent assessment is required to verify
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each submission. In this study, we use high frequency
atmospheric observations from the Mace Head observatory,
Ireland, coupled with a transport model and an inverse
modeling framework, to estimate national HFC-134a emissions
for comparison with the UK inventory.

The UK HFC-134a Inventory. The UK’s annual GHG
inventory must adhere to guidelines provided by the Interna-
tional Panel on Climate Change (IPCC)."° The majority of UK
HFC-134a emissions are reported in UNFCCC category 2F:
Consumption of Halocarbons and SF4 A very minor
contribution (<1%, reflecting the magnitude of UK halocarbon
production) is observed in category 2E, Production of
Halocarbons and SF. Here, we focus solely on consumption.
The UK’s annual submissions are available in Common
Reporting Format (CRF) from the UNFCCC Web site
(http://unfccc.int/ghg data/items/3800.php). In 2010, the
UK reported HFC-134a emissions of 6.0 Gg.

A graphical representation of UK HFC-134a emissive sectors
(omitting production losses) is shown in Figure 1. Emissions

Mobile Air-Conditioning (59%)
Domestic Refrigeration (1%)
Commercial Refrigeration (3%)
Transport Refrigeration (1%)
Stationary Air Conditioning (6%)
Aerosols: MDIs (14%)

Aerosols: Other (16%)

] B

Figure 1. UK HFC-134a 2010 total emissions (UK NIR, 2014) by
source sector (%). (MDI: metered dose inhaler).

from MAC units dominate the market both in the UK (59%)
and across Europe, determined by the size of the respective
automotive fleet. In 2010, the UK reported a MAC HFC-134a
loss rate of 107 g vehicle™" yr™' (UK NIR, 2014 and SMMT),
27 g greater than the nearest comparable European nation.
Refrigerant loss from a typical MAC unit occurs at three
distinct stages of the product life-cycle: (1) initial emissions
during unit manufacture, (2) operational emissions, occurring
as a result of system leakage throughout unit lifetime, (3)
disposal (end of life) emissions, predominantly due to the
release of HFC-134a from a MAC unit upon scrapping/
recycling. Losses occurring as a result of unit refill (MAC
servicing) are included within stage two. Of the three emissive
processes, over 90% of HFC-134a losses occur during the
operational lifetime of the units (UK NIR, 2014).

The remaining 41% (2010) of UK HFC-134a emissions are
split between six sectors. Refrigeration (domestic, commercial
and transport) accounts for a combined 5% of the total
inventory estimate, equivalent to 0.3 Gg. Stationary air-
conditioning units, a diverse sector combining units of varying
sizes (from small household to large commercial systems),
commands a 6% share of HFC-134a emissions, equivalent to
0.36 Gg in 2010. The remaining 30% arises as a result of
aerosol discharge (MDI (metered dose inhalers) and other).
Aerosol emissions occur sporadically, and in comparison to
refrigeration/air-conditioning units, operational loss is near
total; when the propellant is exhausted, the aerosol canister is
disposed of. To the best of our knowledge, the UK does not use
HFC-134a as a blowing agent in foam manufacture.

Subsequently, in contrast to a number of other EU states, no
emissions are reported from this sector.

The Refrigeration and Air-Conditioning (RAC) Model.
UK emissions from refrigeration and air-conditioning systems
are quantified and collated using the RAC model (ICF
International, AEA Ricardo). Combined RAC sectors account
for over 70% of HFC-134a emissions, excluding only those
from aerosols. The RAC model is split into 13 independent
sectors based on source (as shown in Table 1); here we focus

Table 1. Summary of RAC Sectors, Including 2010 UK HFC-
134a Emission Estimates (UK NIR, 2014) and Sector
Contribution to Total RAC HFC-134a Emissions (%)

RAC 2010 emissions/
sector source tonnes
RAC-1 domestic refrigeration 171.92 (4.3%)
RAC-2 small hermetic stand-alone refrigeration 49.33 (1.2%)
units

RAC-3 condensing units 37.73 (1.0%)

RAC-4 centralised supermarket refrigeration 34.73 (0.9%)
systems
RAC-5 industrial refrigeration 8.52 (0.2%)
RAC-6 small stationary air-conditioning 5.01 (0.1%)
RAC-7 medium stationary air-conditioning 13.54 (0.3%)
RAC-8 large stationary air-conditioning (chillers) ~ 97.35 (2.5%)
RAC-9 heat pumps 0.07 (0%)
RAC-10 land transport refrigeration 10.41 (0.3%)
RAC-11 marine transport refrigeration 0 (0%)
RAC-12 light-duty mobile air-conditioning 3127.93 (79.0%)
RAC-13 other mobile air-conditioning 401.80 (10.2%)
total RAC 3958.34

predominantly on the sectors of greatest combined magnitude,
RAC-12/13: Light and other mobile air-conditioning, respec-
tively. The light mobile air-conditioning (LMAC) sector
encompasses units contained within cars and small vans,
whereas other MAC (OMAC) collates refrigerant emissions
from larger vehicles, typically including buses, trains and HGVs
(heavy goods vehicles). LMAC accounts for roughly 90% of
total MAC emissions in the UK (UK NIR, 2014). Each RAC
sector is modeled independently, relying on a single template
that incorporates activity data, emission factors (manufacture,
operation and disposal) and market assumptions.

B MATERIALS AND METHOD

Atmospheric Observations. We use high frequency in
situ measurements from the Mace Head observatory, a fully
intercalibrated'' monitoring site located on the west coast of
County Galway, Ireland (Latitude 53.3°, Longitude —9.9°).
Mace Head is one of 12 remote AGAGE (Advanced Global
Atmospheric Gases Experiment)'” sites, providing long-term in
situ atmospheric measurements since 1987. Meteorological
records (2012) show that roughly 50% of air arriving at the site
comes from the marine sector; the Atlantic Ocean. Of the
remaining samples, 35% are influenced by the UK prior to
arrival at Mace Head. The analysis of HFC-134a began in 1994
and was originally achieved using a Finnigan Magnum Ion Trap
coupled with a custom-built adsorption/desorption system
(ADS)." In 1998, the instrument was upgraded to an Agilent
quadrupole mass selective detector (MSD, Agilent 5973) and in
2003, the ADS setup was replaced by the Medusa GCMS, an
automated preconcentration system providing a greater range
of trace gas measurements. An exhaustive description of the
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Medusa GCMS setup and analysis routine can be found
elsewhere.'!

At Mace Head, a sample module draws air into the inlet at a
high flow rate (~10 L min™"). The height of this inlet is 10 m
above ground level. Prior to analysis, each 2 L real air sample is
preconcentrated by the Medusa system. Reference gas analyses,
which determine and correct for small variations in detector
sensitivity, bracket each ambient sample; due to the
optimization of instrumental sampling parameters, a sample is
acquired approximately every hour. At Mace Head, HFC-134a
is reported relative to the SIO-05 (Scripps Institute of
Oceanography) gravimetric calibration scale (as dry gas mole
fractions in pmol mol™"). A more complete description of the
calibration procedure has been reported previously.'"'*

B RESULTS

Deriving HFC-134a Emissions Using Atmospheric
Concentration Data. We infer UK HFC-134a emissions by
combining atmospheric measurements with simulations from
the Lagrangian particle dispersion model, NAME (numerical
atmospheric-dispersion modeling environment)'>'® within the
Met Office’s inversion modeling system, INTEM (inversion
technique for emission modeling).'®'” Similar regional
modeling techniques have been described previously.'®"
Simulations from NAME are used to generate recent (30-
day) histories of air mass arriving at Mace Head for each 2 h
measurement window. Using an iterative best-fit technique,
simulated annealing,”’ InTEM searches for the emissions map
that minimizes the difference between model and atmospheric
observations. Emissions are output on a grid with an intrinsic
horizontal resolution of 0.352° longitude by 0.234° latitude,
with a single grid cell roughly equal to an area of 25 X 25 km.
The geographical domain of the inversion grid is significantly
smaller than that of the NAME air-history maps, ensuring that
recirculating air-masses are accurately represented. Since very
distant sources have little influence on UK observations, and
are often indiscernible from background noise, we assume that
air entering the inversion domain is of hemispheric baseline
concentration. For a single 3 year inversion, the estimate for
each grid cell is considered constant and geographically static
within the domain. However, since all 3 year periods which
completely overlap a calendar year are used, grid cells may be
reassigned between inversions to account for new observations;
the median of each set of inversions is then used to estimate the
annual value. Due to the long atmospheric lifetime of HFC-
1344, all loss processes are assumed negligible over the course
of each 30 day simulation.'® We assign infinite uncertainty to
the a priori emissions and hence, their influence is considered
negligible. Using INTEM, we estimate the spatial distribution of
HFC-134a emissions across the modeled domain (14.30° W to
30.76° E and 36.35° N to 66.30° N). An estimate of UK
emissions is obtained via aggregation of those grid cells that lay
within the UK’s borders and surrounding waters.

The uncertainty bounds of our top-down estimates represent
a one sigma confidence interval. An in-depth description of the
uncertainty estimation in InTEM has been discussed
previously.' In short, the uncertainty space is explored using
two methods. (1) Each inversion is solved multiple times using
a range of baseline mole fractions within the baseline
uncertainty. This uncertainty is estimated during the baseline
fitting process applied to the HFC-134a observations at Mace
Head. (2) By varying each 3 year inversion window by a month
throughout the data period, each year is solved for multiple
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times, using a different set of observations in each case.”’ Since
there is no correlation between inversions, multiple estimates
are generated; the spread of standard deviations may be used to
assign an uncertainty to each annual estimate.

Our annual UK estimates indicate a steady rise in the
emission rate of HFC-134a between 1995 and 2010,
corresponding well with its use as the dominant refrigerant
gas (replacing first-generation CFCs) in UK markets and a
steady increase in the magnitude of the UK’s air-conditioned
automotive fleet. There are indications that the growth rate may
have diminished post-2010, although the trend is not
statistically significant. The reduced emissions rate may reflect
the introduction of low GWP fourth generation refrigerants,
hydrofluoroolefins (HFOs). In particular, HFO-1234yf (CH, =
CFCF;) has been proposed as a potential “drop-in”
replacement for HFC-134a,”” with an estimated 15% share
of the UK MAC sector in 2012.>* The onset of the EU MAC
Directive,”> which bans the use of HFC-134a in new type-
approved vehicles within the EU as of January 2011, may also
be influential. A complete ban on HFC-134a as a refrigerant in
new MAC systems comes into force in 2017.

Regional and global top-down/bottom up HFC-134a
emission estimates have been compared previously.”**~**
Comparison of our estimates (red trend, Figure 2) with the

T ; T T T

HFC-134a Emissions (Gg)

i | 1
2003 2007 2011

Year

ol i

1995 1999
Figure 2. Annual UK HFC-134a emission estimates (Gg) from 1995
to 2012. In red, the results of our study using the Met Office’ inversion
modeling system, INTEM. In blue, the UK’'s UNFCCC submission
(2014). Shaded regions indicate the respective uncertainty bounds.
Inventory uncertainty is provided by the Department of Energy and

Climate Change, whose estimation is described in detail elsewhere
(UK NIR, 2014).

UK’s annual UNFCCC submission (blue trend, Figure 2)
indicates a significant discrepancy. While the UNFCCC
estimates follow a similar trend to the derived emissions, a
notably greater growth rate results in an increasing emissions
gap throughout the reporting period. In the first four years, our
flux estimates show modest average growth of 0.11 Gg yr ™/,
while the inventory grew at a rate of 0.66 Gg yr'. The rate
deficit is greatest during the initial reporting period. However,
the UNFCCC data exhibits greater annual growth in all but two
years where emissions increased upon the previous year. As a
consequence, 2012 inventory emissions of HFC-134a (5.92 +
0.53 Gg) were approximately 3.12 Gg in excess of those
inferred from atmospheric measurements (2.80 + 0.10 Gg).
RAC Model Sensitivity Analysis. Each sector of the RAC
model is comprised of input assumptions. Individual parame-
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Table 2. RAC-12 (LMAC) Input Assumptions

parameter description

Refill A yes/no input set to yes as default. when yes; all MAC units are assumed to be refilled (serviced) annually, when no; no refill of MAC units
within unit lifetime. Refill refers to the 'topping off’ of each MAC unit. Since operational losses are a percentage of the refrigerant charge,
operational emissions are related to the refill frequency. The model does not account for refrigerant losses incurred during the service procedure
itself.

penetration The percentage of automobiles fitted with a MAC unit. Default values of 5% in 1990 and 80% in 2008, other years linearly interpolated.

lifetime The assumed lifetime of MAC units in the UK automotive fleet.Default value of 15 years

life-cycle Emission factors used to estimate refrigerant loss during the three stages of the MAC unit life-cycle; manufacture, operation and disposal. Default

emission factors

values (% yr™') of 0.5, 20, and 50 in 1990, and 0.5, 10 and 30 in 2010 respectively. Other years linearly interpolated.

Refill (0-100%)

Lifetime (11-16)

Penetration (0-100%)
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Figure 3. Summary of RAC model sensitivity to various RAC-12 input parameters, presented in the context of total HFC-134a emissions. Top Left;
The unit refill parameter varied between 0 and 100%. The dotted line indicates a 50% refill rate, Top Center; Unit lifetime varied within
recommended limits (11—16 years), Top Right; 2008 penetration rate varied between 0 and 100%. Values in other years are interpolated by
assuming linear annual increase. The dotted line shows a penetration rate of 60%. Bottom Left; Manufacturing loss rate, varied between 0.2 and 0.5%
(2010), Bottom Centre; Operational loss rate, varied between 6 and 10% in 2010, Bottom Right; Disposal loss rate, varied between 15 and 30%
(2010). The dashed black line reflects the true inventory estimates, the solid red line with error bars indicates the estimates inferred from

atmospheric data.

ters consist of a default value (Table 2) which may be varied by
the user. Variation is subject to limits provided by the IPCC
good practice guide,'’ in combination with recommendations
from industry experts. Owing to the magnitude of the MAC
market, small variations in each of these parameters, particularly
when combined, can significantly influence the annual
inventory totals.

To determine total MAC emissions, we first calculate the
quantity of refrigerant contained within the market in a given

year.
R=(SXxPR) X CS (1)

Where R is the total amount (i.e., bank) of HFC-134a in MAC
units in any given year, S is the vehicle stock and PR is the

11132

corresponding penetration rate. Charge size, CS, refers to the
total volume of refrigerant in a single MAC unit, and decreases
annually in line with assumed technological developments.
Total operational emissions are then determined using eq 2.

Eop = (z R%r X Of) + (z R%nr X Of X (l - Of)L)
L L

+ P;'et (2)

We define operational emissions, E,, as the sum of
refrigerant contributions from refill (Ry,), no-refill (Ry,,) and
retrofit markets, where L is unit lifetime, O is the operational
loss factor in a given year and F,, are the retrofit emissions in
that year. O; was assumed to be 20% in 1990, and decreases

DOI: 10.1021/acs.est.6b03630
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linearly to a value of 10% in 2010, after which it remained
constant. Retrofitting refers to the process by which MAC
units, originally containing CFC-12, were modified to use
HFC-134a in order to comply with environmental regulation
and extend unit lifetime. Retrofit emissions peaked in 2002 at
0.095 Gg, and ceased in 2007 after all CFC-12 containing units
had reached the end of their operational life. The contributions
from refill and no-refill markets depend on the assumed
servicing rate. In order to increase the flexibility of the model,
we modify the Refill (YES/NO) parameter to allow variation
between 0 and 100% (e.g., a 50% refill rate, representing annual
servicing of half of the UK automotive fleet). The total new
refrigerant is split based on the refill rate percentage, and
calculated accordingly. Manufacturing and disposal losses are
added to give total MAC emissions. We conduct a sensitivity
analysis by varying the four input assumptions within their
respective limits.

Refill. Changing the default refill setting (100%, annual
service of all units) to 0% results in a theoretical emissions
reduction of approximately 2 Gg in 2010, equivalent to a third
of the inventory. While an assumption of no refill is implausible,
varying the refill rate between extremes could significantly
reduce the emissions total. Typically, leading car manufacturers
(Volkswagen Group, Ford, Peugeot) recommend a 2 year
MAC servicing frequency. The dotted line in Figure 3 (center)
indicates an emission estimate trend generated by assuming a
1:1 ratio of units refilled to those not refilled, equivalent to
annual servicing of half of the UK MAC fleet. The result of this
modification is a 1 Gg reduction of the discrepancy in 2010.

Unit Lifetime. We vary the LMAC unit lifetime between 11
and 16 years, in accordance with IPCC (2006)" guidelines.
Increasing the unit lifetime incurs a small increase in annual
flux, however this is only observed after the expiration of the
first generation of units. Increased theoretical emissions are
observed due to a greater number of functioning MAC units in
each reporting year. In contrast, reduction of the average unit
lifetime limits the number of emissive units in each reporting
year and subsequently, a small drop in emissions is observed. In
2010, lowering MAC unit lifetime to 11 years results in a 0.43
Gg reduction in HFC-134a emissions. Considering the strength
of agreement between IPCC recommendations and industry
estimates for LMAC unit lifetime,”**” coupled with the
minimal influence of parameter fluctuations, we expect unit
lifetime to be a minor contributor in efforts to reduce the
emissions gap.

Penetration Rate. MAC market penetration rate is
calculated by dividing the total number of MAC units in the
UK automotive fleet by the size of the fleet itself. While the
total number of cars in the UK is well-defined (Society of
Motor Manufacturers and Traders (SMMT)), little information
appears to exist regarding the number with an air-conditioning
unit. The IPCC does not define a set range into which annual
penetration rates should fall. Here, we vary the penetration in
2008 between 0 and 100%. Rates in other years are determined
by interpolation, and assume linear market increase. Rate
reduction reduces the number of light-duty MAC units on the
UK market, therefore lowering emissions. We note that very
low penetration rates are improbable, since these all but remove
MAC’s contribution toward total UK emissions. By applying a
hypothetical penetration rate of 60%, emissions of HFC-134a
were reduced by roughly 0.75 Gg in 2010. An increase in
annual penetration rate results in the increased magnitude of
reported emissions. Combining reduced unit refill with a

lowered penetration rate significantly reduces emissions. While
assuming 0% refill, setting a penetration rate of 60% generates a
2010 estimate only 0.3 Gg in excess of the INTEM uncertainty.
Further research, in collaboration with DECC, is required to
elucidate LMAC penetration rates fully representative of the
UK market.

Life-Cycle Emission Factors. We vary the emission factors
for manufacture (0.2—0.5%), operation (6—10%) and disposal
(15—30%) in turn. Parameter uncertainty limits are specified
within the model (AEA Ricardo). Minimal variation is observed
within the recommended limits for manufacturing and disposal
emission factors. This might be expected, given the limited
(<10%) contribution of manufacture and disposal toward total
MAC emissions. A small decrease in emissions is noted upon
reduction of the operational loss factor. In 2012, this decrease
was equivalent to 0.2 Gg; a minor decrement in comparison
with the influence of refill and penetration rate. While we use
6% as the minimum operational emission factor, anecdotal
advice from experts suggest this may be optimiztic; catastrophic
losses involving total loss of refrigerant (vehicle collisions etc.)
could prevent plausible reduction in this parameter below 8%,
which may serve in limiting the influence of this parameter

further.

B BAYESIAN PARAMETER ESTIMATION

We can use the results from InTEM (y) to update our
understanding of the parameter estimates (x), using Bayes
theorem:

p(xly) « p(ylx)-p(x) 3)

Based on our sensitivity analysis, we select the two most
important RAC parameters, combine them with scalers for
vehicle activity data and aerosol emissions and define their prior
probability density functions (PDFs), p(x). Refill: Defined
previously. With no prior knowledge, we assume a uniform
distribution between 0 and 100% inclusive. Penetration scaler:
Defined previously. The default rate is 80% from 2008 onward.
We set the lower bound to a scaling factor of 0.5. While we
have no prior information regarding penetration rate, vehicle
statistics are typically well-defined. Hence, we assume a
Gaussian distribution centered on the default value (1) and a
standard deviation of 0.1. Stock scaler: RAC vehicle activity
data was originally provided by the SMMT. We compare this
data with more recently available government statistics (www.
gov.uk/government/collections/vehicles—statistics), and find
these to be 10% lower than the SMMT projections for 2010.
Henceforth, we introduce a scaler for vehicle stock, with a
Gaussian distribution centered on the original SMMT estimate
and a standard deviation of 0.1. Aerosol scaler: aerosols are a
significant contributor of UK HFC-134a emissions, accounting
for almost a third of the total inventory. We apply a scaling
factor to the aerosol contribution, to account for uncertainty in
the reporting method of these combined sectors (MDI and
Other). We set the lower limit to 0, allowing maximum
flexibility for the optimization routine, and the upper limit to
1.2. With no further knowledge to inform the model, a uniform
distribution is assumed. Due to the limited sensitivity of the
model, the influence of MAC unit lifetime variability, possible
leak reduction technologies and emission factor uncertainties
for manufacture, operation and disposal were omitted.

The likelihood function, p(ylx), compares the InTEM data to
the output of the RAC model. It can be expanded, assuming
each of the N data points (INTEM emissions) are uncorrelated:
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Figure 4. Parameter PDFs of the four selected model input parameters. In blue, the a priori PDFs for refill (uniform), stock (Gaussian), penetration
(Gaussian) and aerosol scaling (uniform). The posterior PDFs are shown in red. The default parameter values are included as vertical blue lines.

N - H(x),)*
p(ylx, 6)  exp _% z u
n=0 0, (4)

Parameters are stored in the vector x, and the model is
defined as H(x). Sigma (6) is the uncertainty on each InNTEM
estimate, and 7 is the number of data points (INTEM vyears).

We can solve this system for arbitrary parameter PDFs and a
nonlinear model using MCMC (Markov Chain Monte
Carlo).”® The posterior distribution was sampled using the
Python package Emcee,’’ which uses an affine-invariant
ensemble sampler.”” This was run for 10000 steps, with the
first 5000 subsequently discarded to allow time for the Markov
Chain to reach its equilibrium distribution.

The posterior PDFs (Figure 4) were found to be relatively
broad for the refill, penetration rate and aerosol parameters,
which indicates that the INTEM estimates provide only weak
constraint on these parameters. Similarly, for the stock
parameter, only a small reduction in the standard deviation of
the posterior solution is found, compared to the prior. Given
the lack of constraint, we cannot recommend specific parameter
values here. However, what is clear from our analysis is that the
rate of refill is likely to be significantly lower than the inventory
default. Importantly, this will require a level of flexibility not
available within the current model. As we argue above, a
percentage refill input should be a minimum requirement, since
neither 0 nor 100% refill rates are shown to be probable
representations of the UK market. Our probability analysis
indicates that refill is likely to be lower than 20% (median =
14%), however it should be noted that this parameter is
significantly correlated with the derived penetration rate. A 20%
refill rate corresponds to a refill frequency, averaged across the
entire UK fleet, of approximately S years.

While no other studies appear to have been conducted with
regards to UK refill rates, they have been estimated elsewhere.
Papasavva et al.>* projected high and low emission scenarios for
US MAC units in 2017. In the high emission scenario, which
we consider more likely to reflect vehicles in use between 1990
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and 2012, a 15% refill rate was assumed. Under laboratory
conditions, Hafner et al.>* estimated that each MAC unit will
receive 2 services during it is lifetime (in order to maintain the
functionality of the unit). Given the assumed lifetime of a UK
unit (1S years), this equates to a refill rate of approximately
14%. While this estimate, and that of the high emission scenario
proposed by Papasavva et al. agree well with our median refill
rate, further work is required to determine a true UK estimate.
Climatic effects and differing refill modes (professional vs DIY)
make comparison between countries difficult. By selecting the
range of highest probability refill frequencies, centered on the
median estimate of 14 + 5%, we derive a 2010 operational
emission rate of 56.2—62.3 g vehicle™ yr™' for the UK fleet.
This compares well with Schwarz et al.,>> who estimated an
average leak rate of 52.4—53.9 g vehicle™ yr~' based on field
measurements from across Europe, but less so with Papasavva
et al,, whose high emission scenario estimated a rate of 48.4 g
vehicle™ yr™' for the US fleet. Further analysis of UK specific
MAC emission characteristics is required to verify the results
presented here.

As with refill, a lowering of the default input value for
penetration rate is required to eliminate the emissions gap.
However, the reduction is, statistically speaking, somewhat
smaller, with the default penetration rate corresponding to the
61st percentile of our posterior PDF. The highest probability
reduction in MAC penetration is 15%. In 2010, this results in a
theoretical penetration rate of 68%.

Even with large emission reductions from MAC sectors
(complete removal of MAC emissions would be required for
the matching of INTEM and inventory absolute values), the
magnitude of the emissions discrepancy is such that reduction
in non-RAC sectors is needed. For the purpose of the current
study, we merge MDI and other aerosol uses to form a single
scalable sector. In practice, these independent sectors will be
subject to different uncertainties and as such, unique scaling
factors. Our analysis indicates the need for a significant
reduction of UK aerosol emissions. We take the median value
of 0.20 as the most probable parameter scaler, equivalent to an
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80% reduction in current UK HFC-134a aerosol emissions. In
2010, Germany reported aerosol emissions of 0.31 Gg
(Germany NIR, 2014), while an 80% reduction in UK aerosol
emissions (1.56 Gg) would yield an annual estimate of 0.32 Gg.
Further work is required to explain the very large aerosol
emissions reported by the UK (in comparison to other
European nations). However, the matching of scaled UK
emissions with the German equivalent suggest the results of our
Bayesian analysis to be plausible.

B DISCUSSIONS

Variation of key LMAC input parameters can result in
significant alterations of the UK’s HFC-134a inventory
estimates. However, exclusive modification of the RAC model’s
largest sector, light mobile air-conditioning, does not yield a
plausible scenario by which the inventory and our own top-
down derived results show total agreement. In the initial
analysis of the RAC model, we show the inventory to be
particularly sensitive to changes in refill (servicing) and
penetration rate. The refill assumption is of special interest,
standing out as a notable oversimplification of the UK market.
The current model accepts a single default value of 100%,
assuming annual refill of all MAC units in the UK’s automotive
fleet. However, based on the recommendations of various
manufacturers, it appears likely that the RAC model
significantly overestimates the frequency of MAC servicing. A
refill rate of 50% would represent the guidance of the
automotive manufacturers, but our estimates show that this
scenario may also be too high. Further research is required to
develop this parameter. Owing to a lack of constraint provided
by independent emission estimates inferred from atmospheric
data, our Bayesian analysis provides only broad a posterior
constraints. However, it is clear that significant revisions are
required. If sufficient knowledge could be gained on refill
trends, tightening the constraint on other parameters would be
possible. Regardless, improving the flexibility of the refill
parameter will be key in reducing RAC model uncertainty. As a
minimum, we propose the substitution of the current parameter
with a percentage type input (in addition to significant market
research), but further development to allow annual rate
variation would provide a more long-term solution.

As with refill rates, more research is required before we are
able to make quantitative recommendations for a revised set of
penetration rates, but reducing the number of air-conditioning
units on the market in any given year has the potential to
significantly reduce HFC-134a emissions from the MAC sector.
In particular, combination with a revised refill rate estimate
would drastically reduce reported emissions, bringing them
further into line with our estimates. Analysis suggests a
probable penetration rate reduction of up to 15%. While we
stress the poor constraint on inventory model inputs, our work
clearly defines the need for reassessment of the reporting
method for HFC-134a. Analysis shows significant emission
reductions will need to be found in multiple sectors, particularly
MAC and aerosols, in order to reconcile the inventory with
top-down estimates.
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