104 research outputs found

    Environmental forcing by submarine canyons: Evidence between two closely situated cold-water coral mounds (Porcupine Bank Canyon and Western Porcupine Bank, NE Atlantic)

    Get PDF
    Within the Porcupine Bank Canyon (NE Atlantic), cold-water coral (CWC) mounds are mostly found clustered along the canyon lip, with individual disconnected mounds occurring nearby on the western Porcupine Bank. Remotely operated vehicle-mounted vibrocoring was utilized to acquire cores from both of these sites. This study is the first to employ this novel method when aiming to precisely sample two closely situated areas. Radiometric ages constrain the records from the early to mid-Holocene (9.1 to 5.6 ka BP). The cores were then subjected to 3D segmented computer tomography to capture mound formation stages. The cores were then further examined using stable isotopes and benthic foraminiferal assemblages, to constrain the paleoenvironmental variation that influenced CWC mound formation of each site. In total, mound aggradation rate in the Porcupine Bank Canyon and western Porcupine Bank was comparable to other Holocene CWC mounds situated off western Ireland. Results derived from multiproxy analysis, show that regional climatic shifts define the environmental conditions that allow positive coral mound formation. In addition, the aggradation rate of coral mounds is higher adjacent to the Porcupine Bank Canyon than on the western Porcupine Bank. Benthic foraminifera assemblages and planktic foraminiferal δ13C reveal that higher quality organic matter is more readily available closer to the canyon lip. As such, we hypothesize that coral mound formation in the region is likely controlled by an interplay between enhanced shelf currents and the existence of the Eastern North Atlantic Water-Mediterranean Outflow Water-Transition Zone. The geomorphology of the canyon promotes upwelling of these water masses that are enriched in particles, including food and sediment supply. The higher availability of these particles support the development and succession of ecological hotspots along the canyon lip and adjacent areas of the seafloor. These observations provide a glimpse into the role that submarine canyons play in influencing macro and micro benthic fauna distributions and highlights the importance of their conservation

    Using novel methods to track British and Irish Ice Sheet dynamics since the Late Pleistocene, along the west Porcupine Bank, NE Atlantic

    Get PDF
    Extensive research has been undertaken to elucidate the glacial history of the British Irish Ice Sheet (BIIS) in the NE Atlantic. BRITICE-CHRONO has compiled terrestrial and marine based evidence, to provide an empirical reconstruction of ice sheet expansion and retreat during the Late Pleistocene. Across the Irish margin, particular focus has been given to seafloor sediments which contain ice-rafted debris (IRD). However, there are few publications on IRD from areas proximal to the maximum extent of the BIIS, which would offer further insights on the behaviour of the ice sheet during (de)glacial events. Previous exploratory surveys of the west Porcupine Bank (wPB) visually identified IRD on the seafloor and these present a new study site to investigate the extent of the BIIS and the course of its icebergs. Moreover, there are uncertainties about the effects of icebergs on the marine life and cold-water corals occupying the nearby Porcupine Bank Canyon. Assessing a sediment core containing an IRD analogue for the wPB would thus, have a dual purpose. In the past however, coring missions of the wPB using traditional coring methods (i.e. piston and gravity cores) were unsuccessful. Here, we utilized a novel ROV-mounted vibrocoring procedure to capture a 0.75 m IRD-bearing sediment core from the wPB. Then further novel analytical methods (computed tomography-based IRD-detection) were used to quantify IRD every 0.02 cm to provide the highest resolution record of BIIS related IRD to date. From this, several fluxes of IRD deposition onto the wPB between 31.6 and 9 ka BP were revealed and corroborated by other published records from across the NE Atlantic. It was shown that the wPB IRD fluxes occur simultaneously with other parts of the margin. The IRD signal also shows that iceberg calving occurred on the wPB during the Younger Dryas. Grain-size analysis of the core allowed for a reconstruction and interpretation of the palaeoenvironmental conditions during these IRD flux events and shows that BIIS-derived glaciers had a major impact on hydrodynamic conditions in the wPB. Subsequently, intensive scouring led to a major hiatus in the core during 27.3â 17.2 ka BP. These results are a useful addition to BIIS literature on this part of the shelf. Furthermore, it shows that bottom currents were influenced by (de)glacial events, an important finding when considering the presence of nearby current-dependant benthos

    Ischemic preconditioning in the liver is independent of regulatory T cell activity

    Get PDF
    Ischemic preconditioning (IPC) protects organs from ischemia reperfusion injury (IRI) through unknown mechanisms. Effector T cell populations have been implicated in the pathogenesis of IRI, and T regulatory cells (Treg) have become a putative therapeutic target, with suggested involvement in IPC. We explored the role of Treg in hepatic IRI and IPC in detail. IPC significantly reduced injury following ischemia reperfusion insults. Treg were mobilized rapidly to the circulation and liver after IRI, but IPC did not further increase Treg numbers, nor was it associated with modulation of circulating pro-inflammatory chemokine or cytokine profiles. We used two techniques to deplete Treg from mice prior to IRI. Neither Treg depleted FoxP3.LuciDTR mice, nor wildtyoe mice depleted of Tregs with PC61, were more susceptible to IRI compared with controls. Despite successful enrichment of Treg in the liver, by adoptive transfer of both iTreg and nTreg or by in vivo expansion of Treg with IL-2/anti-IL-2 complexes, no protection against IRI was observed.We have explored the role of Treg in IRI and IPC using a variety of techniques to deplete and enrich them within both the liver and systemically. This work represents an important negative finding that Treg are not implicated in IPC and are unlikely to have translational potential in hepatic IRI

    Molecular correlates of vaccine-induced protection against typhoid fever

    Get PDF
    BACKGROUNDTyphoid fever is caused by the Gram-negative bacterium Salmonella enterica serovar Typhi and poses a substantial public health burden worldwide. Vaccines have been developed based on the surface Vi-capsular polysaccharide of S. Typhi; these include a plain-polysaccharide-based vaccine, ViPS, and a glycoconjugate vaccine, ViTT. To understand immune responses to these vaccines and their vaccine-induced immunological protection, molecular signatures were analyzed using bioinformatic approaches.METHODSBulk RNA-Seq data were generated from blood samples obtained from adult human volunteers enrolled in a vaccine trial, who were then challenged with S. Typhi in a controlled human infection model (CHIM). These data were used to conduct differential gene expression analyses, gene set and modular analyses, B cell repertoire analyses, and time-course analyses at various post-vaccination and post-challenge time points between participants receiving ViTT, ViPS, or a control meningococcal vaccine.RESULTSTranscriptomic responses revealed strong differential molecular signatures between the 2 typhoid vaccines, mostly driven by the upregulation in humoral immune signatures, including selective usage of immunoglobulin heavy chain variable region (IGHV) genes and more polarized clonal expansions. We describe several molecular correlates of protection against S. Typhi infection, including clusters of B cell receptor (BCR) clonotypes associated with protection, with known binders of Vi-polysaccharide among these.CONCLUSIONThe study reports a series of contemporary analyses that reveal the transcriptomic signatures after vaccination and infectious challenge, while identifying molecular correlates of protection that may inform future vaccine design and assessment.TRIAL REGISTRATIONClinicalTrials.gov NCT02324751

    Wearable wireless inertial measurement for sports applications

    Get PDF
    The advent of MEMS inertial sensors has reduced the size, cost and power requirements of 6 Degrees-of-Freedom inertial measurement systems to a level where their use can be considered for wearable wireless monitoring devices. Many applications for such Wearable Wireless Inertial Measurement Units exist in the area of sports and sports science. Such a system would be critical in providing data for the analysis of the kinematic motion data of an athlete - to characterise a player’s technique or track progress and provide accurate, quantitative feedback to player and coach in near real time. A small, lightweight and low power device with the ability to sense the full range of human motion at a high sampling rate is required for such applications. It must also be robust, well sealed and comfortable to wear. Further development and miniaturisation of such devices coupled with progress in energy scavenging may lead to their use in other areas and their near ubiquity, with the potential to be embedded within clothes, buildings, materials, objects and people for health monitoring, location tracking and other purpose

    Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period

    Get PDF
    The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios to force the offline atmospheric chemistry transport model LMDz (Laboratoire de Meteorologie Dynamique) with a standard CH4 emission scenario over the period 2000–2016. The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between 8:7*10^5 and 12:8*10^5 molec cm-3. The inter-model differences in tropospheric OH burden and vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–0:3*10^5 molec cm-3 in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once ingested into the LMDz model, these OH changes translated into a 5 to 15 ppbv reduction in the CH4 mixing ratio in 2010, which represents 7%–20% of the model-simulated CH4 increase due to surface emissions. Between 2010 and 2016, the ensemble of simulations showed that OH changes could lead to a CH4 mixing ratio uncertainty of > 30 ppbv. Over the full 2000–2016 time period, using a common stateof- the-art but nonoptimized emission scenario, the impact of [OH] changes tested here can explain up to 54% of the gap between model simulations and observations. This result emphasizes the importance of better representing OH abundance and variations in CH4 forward simulations and emission optimizations performed by atmospheric inversions

    Environmental forcing by submarine canyons: evidence between two closely situated cold-water coral mounds (Porcupine Bank Canyon and Western Porcupine Bank, NE Atlantic)

    Get PDF
    Within the Porcupine Bank Canyon (NE Atlantic), cold-water coral (CWC) mounds are mostly found clustered along the canyon lip, with individual disconnected mounds occurring nearby on the western Porcupine Bank. Remotely operated vehicle-mounted vibrocoring was utilized to acquire cores from both of these sites. This study is the first to employ this novel method when aiming to precisely sample two closely situated areas. Radiometric ages constrain the records from the early to mid-Holocene (9.1 to 5.6 ka BP). The cores were then subjected to 3D segmented computer tomography to capture mound formation stages. The cores were then further examined using stable isotopes and benthic foraminiferal assemblages, to constrain the paleoenvironmental variation that influenced CWC mound formation of each site. In total, mound aggradation rate in the Porcupine Bank Canyon and western Porcupine Bank was comparable to other Holocene CWC mounds situated off western Ireland. Results derived from multiproxy analysis, show that regional climatic shifts define the environmental conditions that allow positive coral mound formation. In addition, the aggradation rate of coral mounds is higher adjacent to the Porcupine Bank Canyon than on the western Porcupine Bank. Benthic foraminifera assemblages and planktic foraminiferal d13C reveal that higher quality organic matter is more readily available closer to the canyon lip. As such, we hypothesize that coral mound formation in the region is likely controlled by an interplay between enhanced shelf currents and the existence of the Eastern North Atlantic Water-Mediterranean Outflow Water-Transition Zone. The geomorphology of the canyon promotes upwelling of these water masses that are enriched in particles, including food and sediment supply. The higher availability of these particles support the development and succession of ecological hotspots along the canyon lip and adjacent areas of the seafloor. These observations provide a glimpse into the role that submarine canyons play in influencing macro and micro benthic fauna distributions and highlights the importance of their conservation
    corecore