609 research outputs found

    Enhancement of outflow facility in the murine eye by targeting selected tight-junctions of Schlemm's canal endothelia

    Get PDF
    The juxtacanalicular connective tissue of the trabecular meshwork together with inner wall endothelium of Schlemm’s canal (SC) provide the bulk of resistance to aqueous outflow from the anterior chamber. Endothelial cells lining SC elaborate tight junctions (TJs), down-regulation of which may widen paracellular spaces between cells, allowing greater fluid outflow. We observed significant increase in paracellular permeability following siRNA-mediated suppression of TJ transcripts, claudin-11, zonula-occludens-1 (ZO-1) and tricellulin in human SC endothelial monolayers. In mice claudin-11 was not detected, but intracameral injection of siRNAs targeting ZO-1 and tricellulin increased outflow facility significantly. Structural qualitative and quantitative analysis of SC inner wall by transmission electron microscopy revealed significantly more open clefts between endothelial cells treated with targeting, as opposed to non-targeting siRNA. These data substantiate the concept that the continuity of SC endothelium is an important determinant of outflow resistance, and suggest that SC endothelial TJs represent a specific target for enhancement of aqueous movement through the conventional outflow system

    The time course of subsequent hospitalizations and associated costs in survivors of an ischemic stroke in Canada

    Get PDF
    BACKGROUND: Documentation of the hospitalizations rates following a stroke provides the inputs required for planning health services and to evaluate the economic efficiency of any new therapies. METHODS: Hospitalization rates by cause were examined using administrative data on 18,695 patients diagnosed with ischemic stroke (first or subsequent, excluding transient ischemic attack) in Saskatchewan, Canada between 1990 and 1995. Medical history was available retrospectively to January 1980 and follow-up was complete to March 2000. Analyses evaluated the rate and timing of all-cause and cardiovascular hospitalizations within discrete periods in the five years following the index stroke. Cardiovascular hospitalizations included patients with a primary diagnosis of ischemic stroke, transient ischemic attack, myocardial infarction, stable or unstable angina, heart failure or peripheral arterial disease. RESULTS: One-third (36%) of patients were identified by a hospitalized stroke. Mean age was 70.5 years, 48.0% were male, half had a history of stroke or a transient ischemic attack at the time of their index stroke. Three-quarters of the patients (72.7%) were hospitalized at least once during a mean follow-up of 4.6 years, accruing CAD $24 million in the first year alone. Of all hospitalizations, 20.4% were related to cardiovascular disease and 1.6% to bleeds. In the month following index stroke, 12.5% were admitted, an average of 1.04 times per patient hospitalized. Strokes accounted for 33% of all hospitalizations in the first month. The rate diminished steadily throughout the year and stabilized in the second year when approximately one-third of patients required hospitalization, at a rate of about one hospitalization for every two patient-years. Mean lengths of stay ranged from nine days to nearly 40 days. Close-fitting Weibull functions allow highly specific probability estimates. Other cardiovascular risk factors significantly increased hospitalization rates. CONCLUSION: After stroke, there are frequent hospitalizations accounting for substantial additional costs. Though these rates drop after one year, they remain high over time. The number of other cardiovascular causes of hospitalization confirms that stroke is a manifestation of disseminated atherothrombotic disease

    Testing the Water–Energy Theory on American Palms (Arecaceae) Using Geographically Weighted Regression

    Get PDF
    Water and energy have emerged as the best contemporary environmental correlates of broad-scale species richness patterns. A corollary hypothesis of water–energy dynamics theory is that the influence of water decreases and the influence of energy increases with absolute latitude. We report the first use of geographically weighted regression for testing this hypothesis on a continuous species richness gradient that is entirely located within the tropics and subtropics. The dataset was divided into northern and southern hemispheric portions to test whether predictor shifts are more pronounced in the less oceanic northern hemisphere. American palms (Arecaceae, n = 547 spp.), whose species richness and distributions are known to respond strongly to water and energy, were used as a model group. The ability of water and energy to explain palm species richness was quantified locally at different spatial scales and regressed on latitude. Clear latitudinal trends in agreement with water–energy dynamics theory were found, but the results did not differ qualitatively between hemispheres. Strong inherent spatial autocorrelation in local modeling results and collinearity of water and energy variables were identified as important methodological challenges. We overcame these problems by using simultaneous autoregressive models and variation partitioning. Our results show that the ability of water and energy to explain species richness changes not only across large climatic gradients spanning tropical to temperate or arctic zones but also within megathermal climates, at least for strictly tropical taxa such as palms. This finding suggests that the predictor shifts are related to gradual latitudinal changes in ambient energy (related to solar flux input) rather than to abrupt transitions at specific latitudes, such as the occurrence of frost

    Development of a cDNA microarray for the measurement of gene expression in the sheep scab mite Psoroptes ovis

    Get PDF
    Background: Sheep scab is caused by the ectoparasitic mite Psoroptes ovis which initiates a profound cutaneous inflammatory response, leading to the development of the skin lesions which are characteristic of the disease. Existing control strategies rely upon injectable endectocides and acaricidal dips but concerns over residues, eco-toxicity and the development of acaricide resistance limit the sustainability of this approach. In order to identify alternative means of disease control, a deeper understanding of both the parasite and its interaction with the host are required. Methods: Herein we describe the development and utilisation of an annotated P. ovis cDNA microarray containing 3,456 elements for the measurement of gene expression in this economically important ectoparasite. The array consists of 981 P. ovis EST sequences printed in triplicate along with 513 control elements. Array performance was validated through the analysis of gene expression differences between fed and starved P. ovis mites. Results: Sequences represented on the array include homologues of major house dust mite allergens and tick salivary proteins, along with factors potentially involved in mite reproduction and xenobiotic metabolism. In order to validate the performance of this unique resource under biological conditions we used the array to analyse gene expression differences between fed and starved P. ovis mites. These analyses identified a number of house dust mite allergen homologues up-regulated in fed mites and P. ovis transcripts involved in stress responses, autophagy and chemosensory perception up-regulated in starved mites. Conclusion: The P. ovis cDNA microarray described here has been shown to be both robust and reproducible and will enable future studies to analyse gene expression in this important ectoparasite

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore