137 research outputs found

    Cluster Observations of a Cusp Diamagnetic Cavity: Structure, Size, and Dynamics

    Get PDF
    We have analyzed Cluster magnetic field and plasma data during high‐altitude cusp crossing and compared them with high‐resolution MHD simulations. Cluster encountered a diamagnetic cavity (DMC) during northward interplanetary magnetic field (IMF) conditions, and as the IMF rotated southward, the spacecraft reencountered the cavity more at the sunward side of the cusp because the reconnection site had changed location. We found evidence of magnetic reconnection both during northward and southward IMF conditions. The Cluster separation was ∼5000 km, enabling for the first time measurements both inside the DMC and surrounding boundaries that allowed us to construct the structure of the DMC and put the observations of ion pitch angle distributions in context of local reconnection topology and gradients of the boundaries. The cavity is characterized by strong magnetic field fluctuations and high‐energy particles. At the magnetosheath boundary the high‐energy particle fluxes reduced by several orders of magnitude. Throughout the magnetosheath, the high‐energy proton fluxes remained low except during brief intervals when sc4 and sc1 dropped back into the cavity due to changes in solar wind dynamic pressure. However, the high‐energy O+ fluxes did not drop as much in the magnetosheath and were mostly at 60°–120° pitch angles, indicative of a trapped population in the DMC which is observed in the magnetosheath due to a large gyroradius. Significant fluxes of protons and ionized oxygen were also observed escaping from the diamagnetic cavity antiparallel to the magnetic field in a time scale more consistent with the local DMC source than with a reflected bow shock source

    Small scale structures in three-dimensional magnetohydrodynamic turbulence

    Get PDF
    We investigate using direct numerical simulations with grids up to 1536^3 points, the rate at which small scales develop in a decaying three-dimensional MHD flow both for deterministic and random initial conditions. Parallel current and vorticity sheets form at the same spatial locations, and further destabilize and fold or roll-up after an initial exponential phase. At high Reynolds numbers, a self-similar evolution of the current and vorticity maxima is found, in which they grow as a cubic power of time; the flow then reaches a finite dissipation rate independent of Reynolds number.Comment: 4 pages, 3 figure

    Cluster Observations of Bow Shock Energetic Ion Transport Through the Magnetosheath into the Cusp

    Get PDF
    The observation of energetic particles by polar orbiting satellites in the magnetospheric cusp resulted in a controversy about their source region. It has been suggested that these cusp energetic particles (CEP) with significant fluxes from magnetosheath energies up to several hundred keV/e are accelerated locally in the cusp by the turbulence found in cusp diamagnetic cavities (CDC). As an alternative to the local acceleration region, the quasi‐parallel shock is successful as a source region for CEP events. Energetic ions accelerated at the bow shock can be transported downstream and enter the cusp along newly reconnected field lines. Composition and energy spectra of these CEP events resemble those of bow shock energetic diffuse ions. This study investigates a northern cusp pass by the Cluster satellites that encountered two CDCs with CEP ions. We use recently developed techniques to determine the location of the reconnection site at the magnetopause, draping interplanetary magnetic field lines over the magnetopause and mapping those field lines back into the solar wind to show magnetic connection of the cusp regions, Earth’s bow shock, and upstream region. Energetic ions are also observed outside the magnetopause in the boundary layer streaming from the quasi‐parallel shock toward the cusp which supports an outside source region for CEP ions

    Cluster Observations of Magnetic Field Fluctuations in the High-Altitude Cusp

    Get PDF
    High-resolution (22 vector/s) magnetic field data from Cluster FGM instrument are presented for the highaltitude cusp crossing on 17 March 2001. Despite the quiet solar wind conditions, the cusp was filled with magnetic field turbulence for much of the crossing. Large-scale fluctuations show some correlation between spacecraft but the higher frequency fluctuations show no correlation, indicating that the length scales of these waves are smaller than the spacecraft separation (500 km). In many intervals, there are clear peaks in the wave power around the ion cyclotron frequency (~1 Hz), and there is some evidence for waves at the first harmonic of this frequency. Both left- and right-hand polarised waves are found, with angles of propagation with respect to the ambient magnetic field that range from parallel to perpendicular. The regions of enhanced magnetic field fluctuations appear to be associated with plasma flows possibly originating from a lobe reconnection site. The most coherent, long lasting wave trains with frequencies close to local ion cyclotron frequency occur at a boundary between a sheared flow and a stagnant plasma

    Ion Cyclotron Waves in the High Altitude Cusp: CLUSTER observations at Varying Spacecraft Separations

    Get PDF
    We have analysed high-resolution Cluster magnetic field data during three high-altitude cusp crossings in 2001 and 2002. The Cluster separations for these crossings varied between 100 and 600 km and therefore provided an unique opportunity to study wave properties at different length scales. In the cusp Cluster sees frequent intervals of magnetic field fluctuations with clear peaks in power close to the local ion cyclotron frequency, and both left- and right-handed polarisations. At large separations the power seen at different spacecraft can differ by orders of magnitude. For smaller separations, the power seen at the four spacecraft agrees better but still shows some differences. For all separations there was no significant correlation between the signals seen at different spacecraft, indicative of very local structure. The origin of the waves appears to lie in highly filamented sheared plasma flows present in the cusp

    Asymmetry of Magnetosheath Flows and Magnetopause Shape During Low Alfvén Mach Number Solar Wind

    Get PDF
    Previous works have emphasized the significant influence of the solar wind Alfvén Mach number (MA) on magnetospheric dynamics. Here we report statistical, observational results that pertain to changes in the magnetosheath flow distribution and magnetopause shape as a function of solar wind MA and interplanetary magnetic field (IMF) clock angle orientation. We use all Cluster 1 data in the magnetosheath during the period 2001–2010, using an appropriate spatial superposition procedure, to produce magnetosheath flow distributions as a function of location in themagnetosheath relative to the IMF and other parameters. The results demonstrate that enhanced flows in the magnetosheath are expected at locations quasi-perpendicular to the IMF direction in the plane perpendicular to the Sun-Earth line; in other words, for the special case of a northward IMF, enhanced flows are observed on the dawn and dusk flanks of the magnetosphere, while much lower flows are observed above the poles. The largest flows are adjacent to themagnetopause. Using appropriate magnetopause crossing lists (for both high and lowMA), we also investigate the changes inmagnetopause shape as a function of solarwindMA and IMF orientation. Comparing observed magnetopause crossings with predicted positions from an axisymmetric semi-empirical model, we statistically show that the magnetopause is generally circular during high MA, while is it elongated (albeit with moderate statistical significance) along the direction of the IMF during low MA. These findings are consistent with enhanced magnetic forces that prevail in the magnetosheath during lowMA. The component of the magnetic forces parallel to the magnetopause produces the enhanced flows along and adjacent to the magnetopause, while the component normal to the magnetopause exerts an asymmetric pressure on the magnetopause that deforms it into an elongated shape

    Coordinated Cluster/Double Star Observations of Dayside Reconnection Signatures

    Get PDF
    The recent launch of the equatorial spacecraft of the Double Star mission, TC-1, has provided an unprecedented opportunity to monitor the southern hemisphere dayside magnetopause boundary layer in conjunction with northern hemisphere observations by the quartet of Cluster spacecraft. We present first results of one such situation where, on 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawnside magnetosphere. The observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1, which appear to lie north and south of the reconnection line, respectively. In fact, the observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, with Cluster observing northward moving FTEs with +/− polarity, whereas TC-1 sees −/+ polarity FTEs. This assertion is further supported by the application of a model designed to track flux tube motion for the prevailing interplanetary conditions. The results from this model show, in addition, that the low-latitude FTE dynamics are sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model suggests that TC-1 should miss the resulting FTEs more often than Cluster and this is borne out by the observations

    The Link Between Shocks, Turbulence and Magnetic Reconnection in Collisionless Plasmas

    Get PDF
    Global hybrid (electron fluid, kinetic ions) and fully kinetic simulations of the magnetosphere have been used to show surprising interconnection between shocks, turbulence and magnetic reconnection. In particular collisionless shocks with their reflected ions that can get upstream before retransmission can generate previously unforeseen phenomena in the post shocked flows: (i) formation of reconnecting current sheets and magnetic islands with sizes up to tens of ion inertial length. (ii) Generation of large scale low frequency electromagnetic waves that are compressed and amplified as they cross the shock. These \u27wavefronts\u27 maintain their integrity for tens of ion cyclotron times but eventually disrupt and dissipate their energy. (iii) Rippling of the shock front, which can in turn lead to formation of fast collimated jets extending to hundreds of ion inertial lengths downstream of the shock. The jets, which have high dynamical pressure, \u27stir\u27 the downstream region, creating large scale disturbances such as vortices, sunward flows, and can trigger flux ropes along the magnetopause. This phenomenology closes the loop between shocks, turbulence and magnetic reconnection in ways previously unrealized. These interconnections appear generic for the collisionless plasmas typical of space, and are expected even at planar shocks, although they will also occur at curved shocks as occur at planets or around ejecta

    Kelvin-Helmholtz Instability Associated With Reconnection and Ultra Low Frequency Waves at the Ground: A Case Study

    Get PDF
    The Kelvin-Helmholtz instability (KHI) and its effects relating to the transfer of energy and mass from the solar wind into the magnetosphere remain an important focus of magnetospheric physics. One such effect is the generation of Pc4-Pc5 ultra low frequency (ULF) waves (periods of 45–600 s). On July 3, 2007 at ∼ 0500 magnetic local time the Cluster space mission encountered Pc4 frequency Kelvin-Helmholtz waves (KHWs) at the high latitude magnetopause with signatures of persistent vortices. Such signatures included bipolar fluctuations of the magnetic field normal component associated with a total pressure increase and rapid change in density at vortex edges; oscillations of magnetosheath and magnetospheric plasma populations; existence of fast-moving, low-density, mixed plasma; quasi-periodic oscillations of the boundary normal and an anti-phase relation between the normal and parallel components of the boundary velocity. The event occurred during a period of southward polarity of the interplanetary magnetic field according to the OMNI data and THEMIS observations at the subsolar point. Several of the KHI vortices were associated with reconnection indicated by the Walén relation, the presence of deHoffman-Teller frames, field-aligned ion beams observed together with bipolar fluctuations in the normal magnetic field component, and crescent ion distributions. Global magnetohydrodynamic simulation of the event also resulted in KHWs at the magnetopause. The observed KHWs associated with reconnection coincided with recorded ULF waves at the ground whose properties suggest that they were driven by those waves. Such properties were the location of Cluster’s magnetic foot point, the Pc4 frequency, and the solar wind conditions.publishedVersio
    corecore