87 research outputs found

    Does Task-specific Self-efficacy Predict Science Competencies?

    Get PDF
    Self-efficacy is an affective-motivational factor that strongly predicts academic performance. With respect to science competencies, self-efficacy is related to two subcomponents that are closely associated already in kindergarten: Science content knowledge (e.g., physics knowledge) and scientific reasoning (e.g., knowing how to conduct a controlled experiment). To make accurate action predictions, the precise and specific measurement of self-efficacy is needed. With respect to different subcomponents of science competencies (i.e., science knowledge and scientific reasoning), there is to date a lack of studies that simultaneously investigate the association between students’ self-efficacy and their performance in these two subcomponents of science competencies. The complex (cross-)relations between these constructs are investigated in the present study. The sample comprised N=181 fifth graders (90 girls, 91 boys). Exploratory and confirmatory factor analyses suggest that the two task-specific self-efficacy scales (scientific reasoning and science content knowledge) can be distinguished from each other and from general academic self-efficacy. Structural equation models reveal that task-specific self-efficacy in scientific reasoning is related to performance in scientific reasoning (.52) and science content knowledge (.32). Conversely, task-specific self-efficacy in science content knowledge correlates with performance in science content knowledge (.36) and scientific reasoning (.27). As expected, the strongest correlations between task-specific self-efficacy and performance emerge within the domain, but the significant cross-relations show the potential for furthering both aspects of performance and self-efficacy of science competencies and a need for a more detailed (longitudinal) investigation of these complex relations

    Self-effective scientific reasoning? Differences between elementary and secondary school students

    Get PDF
    Although scientific reasoning is not a formal, independent school subject, it is an increasingly important skill, especially for student learning in science, technology, engineering, and mathematics (STEM) subjects. To promote scientific reasoning effectively, it is important to know its influencing factors. While cognitive influences have been investigated, affective-motivational factors, particularly self-efficacy, have rarely been considered in studies on scientific reasoning. To examine, for the first time, whether self-efficacy can be measured in a task-specific way and whether self-efficacy correlates with students’ scientific reasoning performance, the study assessed performance in scientific reasoning and self-efficacy (academic and task-specific) in a sample of 140 fourth graders and 148 eighth graders. As expected, higher correlations emerged for task-specific self-efficacy in both grades. A hierarchical cluster analysis showed that the correlational patterns were not the same across grade levels, with differences in self-estimated performance prevailing between the two grade levels: The largest cluster in Grade 4 (41%) comprised children who significantly overestimated their performance, whereas the largest cluster in Grade 8 (39%) comprised students who gave a realistic estimate of their own performance in scientific reasoning. This cluster was not present in Grade 4. Additional clusters of students who overestimated or underestimated their performance emerged in both grades. The results support the conclusion that self-efficacy expectations are important to consider when fostering scientific reasoning, and the large number of elementary school students who overestimated their performance suggests that not all students might benefit from interventions targeted at increasing self-efficacy

    Diagnostic probability classification in suspected borreliosis by a novel Borrelia C6-peptide IgG1- subclass antibody test

    Get PDF
    The tick-borne multisystemic infection caused by Borrelia burgdorferi sensu lato, Lyme borreliosis, or Lyme disease, occurring in temperate regions of the northern hemisphere, continues to spread geographically with the expanding tick population. Despite the rising perceived risk of infection in the population, the clinical diagnosis of Borrelia infection is not always obvious and the most important laboratory test, antibody detection, has limited accuracy in diagnosing active disease. According to international guidelines, the primary serology test, which has a high sensitivity-low specificity, should, be verified using a high specificity confirmation test to improve the specificity. However, this enhancement in specificity comes at the cost of lower sensitivity. This two-step procedure is often omitted in everyday clinical practice. An optimal primary test would be one where no secondary tests for confirmation would be necessary. In the present study, the performance of a novel assay for quantitating IgG1-subclass antibodies to Borrelia C6-peptide was compared to a commercial reference assay of total IgG and IgM antibodies to Borrelia C6-peptide in the setting of a high endemic area for borreliosis. A derivation study on a retrospective clinical material was performed to compare the performance parameters and assess the discriminatory properties of the assays, followed by a prospective validation study. The IgG1-antibody assay achieved comparable summary performance parameters to those of the reference assay. The sensitivity was almost 100% while the specificity was about 50%. In a high-endemic setting, characterized by high background seropositivity of about 50% and disease prevalence of approximately 10%, antibody tests are unable to rule-in active Borrelia infection. The rule-out assessment of the methods revealed that of 1000 patients, 7 – 54 with negative results based on the reference method could have an active Borrelia infection. Such uncertainty was not found for the index test and may help improve the risk classification of patients

    Impact of an icy winter on the Pacific oyster (Crassostrea gigas Thunberg, 1793) populations in Scandinavia

    Get PDF
    The Pacific oyster (Crassostrea gigas) is an invasive species that has dispersed into Scandinavia during the last few decades. The objective of this study was to evaluate the effects of extreme winter conditions on the mortality of the Pacific oyster in Scandinavia. The study was done by compiling mortality data from independent surveys in Denmark, Sweden and Norway. Winter mortality of the oysters increased with latitude, which can be explained by the colder climate experienced at higher latitudes. Mortality was also found to be affected by site specific conditions such as water depth at the sampling sites of oyster populations. Despite the severe winter conditions of 2009/2010 causing high mortality, the Pacific oyster still exists in large numbers in Scandinavia. The present investigation indicates that extreme winter onditions may result in a temporary reduction of the density of the Pacific oyster, but that the species can be expected to continue its invasion of Scandinavian coastal areas.publishedVersio

    Evaluation of a health promotion program in children: Study protocol and design of the cluster-randomized Baden-WĂŒrttemberg primary school study [DRKS-ID: DRKS00000494]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing prevalences of overweight and obesity in children are known problems in industrialized countries. Early prevention is important as overweight and obesity persist over time and are related with health problems later in adulthood. "Komm mit in das gesunde Boot - Grundschule" is a school-based program to promote a healthier lifestyle. Main goals of the intervention are to increase physical activity, decrease the consumption of sugar-sweetened beverages, and to decrease time spent sedentary by promoting active choices for healthy lifestyle. The program to date is distributed by 34 project delivery consultants in the state of Baden-WĂŒrttemberg and is currently implemented in 427 primary schools. The efficacy of this large scale intervention is examined via the Baden-WĂŒrttemberg Study.</p> <p>Methods/Design</p> <p>The Baden-WĂŒrttemberg Study is a prospective, stratified, cluster-randomized, and longitudinal study with two groups (intervention group and control group). Measurements were taken at the beginning of the academic years 2010/2011 and 2011/2012. Efficacy of the intervention is being assessed using three main outcomes: changes in waist circumference, skinfold thickness and 6 minutes run. Stratified cluster-randomization (according to class grade level) was performed for primary schools; pupils, teachers/principals, and parents were investigated. An approximately balanced number of classes in intervention group and control group could be reached by stratified randomization and was maintained at follow-up.</p> <p>Discussion</p> <p>At present, "Komm mit in das Gesunde Boot - Grundschule" is the largest school-based health promotion program in Germany. Comparative objective main outcomes are used for the evaluation of efficacy. Simulations showed sufficient power with the existing sample size. Therefore, the results will show whether the promotion of a healthier lifestyle in primary school children is possible using a relatively low effort within a school-based program involving children, teachers and parents. The research team anticipates that not only efficacy will be proven in this study but also expects many other positive effects of the program.</p> <p>Trial registration</p> <p>German Clinical Trials Register (DRKS), DRKS-ID: DRKS00000494</p

    Beyond the Global Brain Differences:Intraindividual Variability Differences in 1q21.1 Distal and 15q11.2 BP1-BP2 Deletion Carriers

    Get PDF
    BACKGROUND: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and globalbrain differences compared with noncarriers. However, interpreting regional differences is challenging if a globaldifference drives the regional brain differences. Intraindividual variability measures can be used to test for regionaldifferences beyond global differences in brain structure.METHODS: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n =30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matchednoncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual’sregional difference and global difference, were used to test for regional differences that diverge from the globaldifference.RESULTS: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differedmore than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thicknessin regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal andsomatosensory cortex differed more than the global difference in cortical thickness.CONCLUSIONS: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distaland 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distaland 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanismsinvolved in altered neurodevelopment

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    • 

    corecore