505 research outputs found

    Florida Bay Science Program: a synthesis of research on Florida Bay

    Get PDF
    This report documents the progress made toward the objectives established in the Strategic Plan revised in 1997 for the agencies cooperating in the program. These objectives are expressed as five questions that organized the research on the Florida Bay ecosystem: Ecosystem History What was the Florida Bay ecosystem like 50, 100, and 150 years ago? Question 1—Physical Processes How and at what rates do storms, changing freshwater flows, sea level rise, and local evaporation and precipitation influence circulation and salinity patterns within Florida Bay and exchange between the bay and adjacent waters? Question 2—Nutrient Dynamics What is the relative importance of the influx of external nutrients and of internal nutrient cycling in determining the nutrient budget for Florida Bay? What mechanisms control the sources and sinks of the bay’s nutrients? Question 3—Plankton Blooms What regulates the onset, persistence, and fate of planktonic algal blooms in Florida Bay? Question 4—Seagrass Ecology What are the causes and mechanisms for the observed changes in the seagrass community of Florida Bay? What is the effect of changing salinity, light, and nutrient regimes on these communities? Question 5—Higher Trophic Levels What is the relationship between environmental and habitat change and the recruitment, growth, and survivorship of animals in Florida Bay? Each question examines different characteristics of the Florida Bay ecosystem and the relation of these to the geomorphological setting of the bay and to processes linking the bay with adjacent systems and driving change.This report also examines the additional question of what changes have occurred in Florida Bay over the past 150 years

    Interview with Renato Dulbecco

    Get PDF
    Interview with Renato Dulbecco, conducted on 17 November 2006 by Xander Nuttle, a student at Duke University. This work was done for an undergraduate course taught by Robert Cook-Deegan, "A Social and Political History of Genomics.

    Variation and Uncertainty in Evaporation from a Subtropical Estuary: Florida Bay

    Get PDF
    Variation and uncertainty in estimated evaporation was determined over time and between two locations in Florida Bay, a subtropical estuary. Meteorological data were collected from September 2001 to August 2002 at Rabbit Key and Butternut Key within the Bay. Evaporation was estimated using both vapor flux and energy budget methods. The results were placed into a long-term context using 33 years of temperature and rainfall data collected in south Florida. Evaporation also was estimated from this long-term data using an empirical formula relating evaporation to clear sky solar radiation and air temperature. Evaporation estimates for the 12-mo period ranged from 144 to 175 cm yr21, depending on location and method, with an average of 163 cm yr21 (6 9%). Monthly values ranged from 9.2 to 18.5 cm, with the highest value observed in May, corresponding with the maximum in measured net radiation. Uncertainty estimates derived from measurement errors in the data were as much as 10%, and were large enough to obscure differences in evaporation between the two sites. Differences among all estimates for any month indicate the overall uncertainty in monthly evaporation, and ranged from 9% to 26%. Over a 33-yr period (1970–2002), estimated annual evaporation from Florida Bay ranged from 148 to 181 cm yr21, with an average of 166 cm yr21. Rainfall was consistently lower in Florida Bay than evaporation, with a long-term average of 106 cm yr21. Rainfall considered alone was uncorrelated with evaporation at both monthly and annual time scales; when the seasonal variation in clear sky radiation was also taken into account both net radiation and evaporation were significantly suppressed in months with high rainfall

    093-Ecological Assessment of Attention and Emotion

    Get PDF
    Attention bias (AB) is a characteristic seen in individuals with anxiety, in which they attend to threatening or negative stimuli more frequently than neutral stimuli (Bar-Haim et al., 2007). To our knowledge, prior research investigating AB in social situations have not conducted experiments in true real-world situations, making results difficult to generalize to the real world. The present study adapted methods from Kirchbaum et al. (1993) Trier Social Stress Test (TSST) model and assessed participant attentiveness to positive and negative stimuli in a stressful situation. The TSST consists of participants completing a brief speaking task in front of a panel. For this study, participants will wear PupilCore mobile eye tracking technology that monitors visual fixations throughout the experiment. A pretest activity will be conducted to acclimate participants to the novel social environment. This will then be followed by the TSST, posttest activity, and debrief consecutively. Data from the pre/post test and the TSST will be analyzed for fixations between two confederates, one of which presents as attentive and affirmative (positive) and, the other disengaged (negative). It is hypothesized that more anxious individuals will attend to the negative stimuli more frequently throughout the study, but that this AB will be most significant during the TSST

    Vegetation Re-development After Fen Meadow Restoration by Topsoil Removal and Hay Transfer

    Get PDF
    We investigated the effects of different restoration treatments on the development of fen meadow communities: (1) depth of topsoil removal, with shallow (circa 20 cm) and deep (circa 40 cm) soil removal applied, (2) transfer of seed-containing hay, and (3) access of large animals. We carried out a full factorial experiment with all combinations of these factors and monitored it for 4 years. We studied the effect of seed availability in the soil seed bank on species abundance in the vegetation and compared it to the effect of species introduction by hay. We observed large differences in species composition between different treatments after 4 years. The combination of hay transfer, deep soil removal, and exclusion of large animals resulted in a community with highest similarity to the target vegetation. We found that the transfer of seeds with hay had a larger effect on species abundance than the soil seed bank. Hay transfer appeared to have important consequences on vegetation development because it speeded up the establishment of the target vegetation.

    Simulation of Wind Dispersal of Tree Seeds, Tree Colonization, and Growth of Bottomland Hardwood Reforestation Sites of the Mississippi Alluvial Valley

    Get PDF
    Tree community composition in bottomland hardwood reforestation sites is considerably less diverse than natural bottomland hardwood forests. This study sought to understand the mechanisms behind failure to develop diverse tree communities. First, I developed a mechanistic model of seed dispersal by wind in spatially variable environments. Second, I developed a spatially explicit simulation model of forest dynamics that includes this wind-dispersal model to investigate whether diversity is limited by dispersal or interactions among species and individuals. Finally, I performed model experiments to determine if manipulations of stand structure might help improve conditions for colonization of various species, thus enhancing diversity of reforestation sites. The wind dispersal model was unbiased and accurate for predicting seed dispersal patterns of four species of wind-dispersed trees, demonstrating the utility of my algorithm for making predictions of seed arrival in a forest simulation model. The forest simulation model accurately predicted basal area growth and general patterns of species relative abundance in natural and reforested bottomland hardwoods, and predicted that reforestation sites will probably never attain diversity levels of natural forests under the current management scenario. Development of diversity was hindered by competition from the species planted and limited dispersal from forests. Hence, the only reasonably successful option to enhance diversity is probably to establish sites with mixed-species plantings at the outset. However, if stands are thinned at relatively young ages (15 yr for acorn-established stands, 25 yr for seedling-established stands), before canopy closure from planted individuals results in mortality of colonizing individuals, diversity may be enhanced if adequate numbers of colonizers are able to disperse to the site. Further research is necessary on mechanistic dispersal by animals, transition rates from seeds to seedlings, and the factors that affect such transitions in order to more accurately predict forest community development

    Jon Nuttle: Master Teacher Interview

    Get PDF
    Interview with Jon Nuttle, Master teacher for Qualitative Educational Research.https://scholars.fhsu.edu/ors/1258/thumbnail.jp

    Integrated Conceptual Ecosystem Model Development for the Southeast Florida Coastal Marine Ecosystem

    Get PDF
    The overall goal of the MARES (MARine and Estuarine goal Setting) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made both by policy makers and by natural resource and environmental management agencies. The document that follows briefly describes MARES overall and this systematic process. It then describes in considerable detail the resulting output from the first step in the process, the development of an Integrated Conceptual Ecosystem Model (ICEM) for the third subregion to be addressed by MARES, the Southeast Florida Coast (SEFC). What follows with regard to the SEFC relies upon the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations during workshops held throughout 2009–2012 in South Florida
    corecore