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ABSTRACT 

Recreation or restoration of saltmarsh through the deliberate removal of flood 

defences (managed realignment or de-embankment) is a common practice across 

Europe and the USA, with potential to enhance delivery of ecosystem services.  

However, recent research suggests that physical, chemical and ecological processes 

may be impaired in recreated sites as a result of the modified morphology, sediment 

structure and hydrology associated with both the restoration process and historic 

land use. This paper compares physical sediment properties and subsurface water 

levels recorded in paired natural and de-embanked (recreated) saltmarshes in SE 

England. Using a combination of statistical and time series modelling, significant 

differences between the natural and recreated marshes are identified. Sediment 

properties (bulk density, moisture content and organic content) within each marsh 

were statistically different and imply that de-embanked sediments are compacted 

which may affect subsurface water movement. Analysis of hydrological time series 

reveals that the de-embanked saltmarsh is characterised by a damped response to 

tidal flooding with elevated and less variable water levels. This, combined with 



analysis of hydrographs and hysteresis patterns over individual tidal cycles suggests 

that fast, horizontal near-surface flows enhanced by the relict land surface may play 

a greater role in drainage of the de-embanked saltmarsh.  The importance of 

hydrological functioning in governing many important physical and biogeochemical 

processes in saltmarshes suggests any modifications would have significant 

implications for the delivery of ecosystem services.  
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INTRODUCTION 

Saltmarshes and mudflats are globally important environments providing a range of 

ecosystem services including: wild species diversity; climate regulation, 

immobilisation of pollutants and flood hazard mitigation; and cultural services such as 

recreation and amenity (Costanza et al., 1997; Millennium Ecosystem Assessment, 

2005; Barbier et al., 2011). Yet, they are threatened by sea level rise, human 

population growth, urbanisation and pollution resulting in degradation and 

widespread habitat loss. As a result a large number of coastal recreation projects 

have been implemented over the last few decades and the most common approach 

involves the deliberate lowering, removal or breaching of hard sea defences to allow 

tidal inundation of previously defended low-lying coastal areas; known as managed 

realignment or de-embankment.  In Europe and the USA, de-embankment has been 

driven by legislative requirements for improved biodiversity and ecological status (e.g. 

EU Habitats Directive, Birds Directive and Water Framework Directive; European 

Parliament and the Council of the European Union, 1992; 2009; 2000), for pollution 

control (e.g. Clean Water Act; Committee on Mitigating Wetland Losses, 2001), and 

for flood mitigation (e.g. EU Floods Directive; European Parliament and the Council 

of the European Union, 2007).  In addition, recreated saltmarshes may also have the 



potential to offer additional biogeochemical benefits including nutrient/contaminant 

storage, denitrification, and carbon sequestration which to date have been largely 

unquantified (Andrews et al., 2006; Shepherd et al., 2007; Adams et al., 2012; 

Burden et al., 2013). 

 

Post-recreation monitoring generally focuses on re-colonisation by saltmarsh 

vegetation and indicates that environmental enhancements can be achieved 

relatively quickly, as long as elevation, and hence hydroperiod are suitable (Spencer 

and Harvey, 2012). However, there is growing evidence to demonstrate that the 

recreated saltmarshes do not have the same biological characteristics as their 

natural counterparts with implications for their functioning and the ecosystem 

services that they provide (Elsey-Quirk et al., 2009; Garbutt and Wolters, 2008; 

Mossman et al., 2012a; 2012b). Such differences in species composition and 

diversity have been largely attributed to abiotic conditions such as redox, salinity and 

nutrient availability in the recreated sites (Erfanzadeh et al., 2010; Mossman et al., 

2012a). It has also been observed that previous land-use (drainage and agriculture) 

results in irreversible changes to subsurface sediment structure (including the 

collapse of pore space) and poor drainage at the sediment surface (Crooks and Pye, 

2000; Hazeldon and Boorman, 2001; Boorman et al., 2002; Ellis and Atherton 2003; 

Spencer et al., 2008) and this could explain both the abiotic conditions and the 

observed differences in species composition in recreated and natural sites (Mossman 

et al., 2012a). Changes to sediment structure are likely to have significant 

implications for hydraulic conductivity and hydrological connectivity, and hence solute 

transfer through the subsurface environment. Observations of post-recreation creek 

structure at Orplands Managed Realignment site also suggests underlying sediment 

structure influencing surface flows possibly as a result of poor hydraulic connectivity 

(Figure 1). Yet, despite this evidence and the consequences for ecosystem service 

delivery, few studies have examined subsurface sediment structure and hydrology in 



recreated saltmarshes, with most research focusing on measures of the 

hydroperiod/elevation, surface flows/water depths and proxies for subsurface 

hydrological functioning/sediment structure such as bulk density, moisture content 

and porosity (e.g. Howe et al., 2010; Beauchard et al., 2011). 

 

This paper compares sediment properties and subsurface water levels recorded in a 

paired de-embanked and natural saltmarsh, and considers the possible effects upon 

hydrological functioning and the delivery of ecosystem services in recreated 

saltmarshes. Objectives of the study are to examine: 1) sediment properties (bulk 

density, moisture content, loss on ignition); 2) subsurface water levels (timing and 

magnitude of fluctuations); and 3) the temporal structure of a subsurface hydrological 

time series (hysteresis) in a paired de-embanked and natural saltmarshes. 

 

METHODS 

Field site 

The field site was located at Orplands Farm Managed Realignment Site, Blackwater 

Estuary, SE England (Figure 2). The site is approximately 20 ha and the saltmarsh 

was first embanked and drained in 1820 to create arable farmland. It was then de-

embanked in 1995 allowing complete inundation at spring tides and the recreation of 

saltmarsh habitat (Emmerson et al., 1997). Previous studies have demonstrated that 

physical sediment properties are heavily modified (Spencer et al., 2008) and plant 

species diversity is poorer than expected (Garbutt and Wolters, 2008) in the de-

embanked saltmarsh. 

 

Field data were collected from a de-embanked (‘DE’) and an adjacent natural 

saltmarsh (‘NAT’) at the same elevation (2.85 m +/- 0.07m ODN) (Figure 2) to ensure 

that they were approximately matched in terms of the hydroperiod. As the NAT site 

was heavily eroded, sampling was restricted to the rear of the saltmarsh. Sampling 



was further constrained to ensure sampling locations were located at the same 

distance from the nearest creek or tidal channel (15m) to reduce horizontal 

subsurface water movement (as found by Nuttle (1988)). Samples were collected 

using a stratified-random sampling approach (replicates were sampled randomly 

within the high marsh area on both saltmarshes) and were deemed to be 

representative of the particular location within each marsh whilst ensuring dominant 

factors are controlled (i.e. uniform tidal inundations) allowing for a pair-wise 

comparison. This approach has been used in similar studies conducted by Garbutt 

and Wolters (2008) and Spencer et al. (2008) to compare species and sediment 

properties between natural and de-embanked saltmarshes. 

 

Marsh sediment profiles 

In order to characterise physical sediment properties, three replicate 30 cm sediment 

cores were extracted within a 3 m2 area in both the NAT and DE saltmarshes and 

stored at 5o C until required. Cores were sub-divided at 5 cm intervals and analysed 

for dry bulk density, moisture content and loss on ignition (LOI, as a proxy for organic 

matter content) following Rowell (1994). Mann Whitney U tests (SPSS v20) were 

used to identify significant differences in sediment properties between NAT and DE 

sites. All sampling took place at low tide and samples were collected at the same 

time (+/- 30 minutes).  

 

Subsurface water levels 

To allow continuous monitoring of subsurface water levels, three piezometers were 

positioned to a depth of 0.6 m in both the DE and NAT saltmarshes. Piezometers 

were constructed from Acrylonitrile Butadiene Styrene (2 m length x 0.04 m diameter) 

and perforated (ø 0.5 cm) at regular intervals along the lower 40cm section. At the 

surface of the marsh, the piezometers were sealed with bentonite to prevent wave 

erosion and avoid direct surface flooding. Pressure transducers (Solinst Levelogger 



Gold) were positioned in each piezometer and data were recorded continuously at 

15-minute intervals during January 2012. A barometric pressure transducer (Solinst 

Barologger Gold) was sited above the spring tide level to compensate water level 

readings for changes in atmospheric pressure. Surface elevation relative to 

Ordnance Datum Newlyn (ODN) (+/- 3mm) was obtained using a Topcon d-GPS. 

 

Drainage Tests 

A simple drainage test was performed by flooding one piezometer in both the DE and 

NAT saltmarsh with 1L of water. Water levels were recorded at 1 minute intervals for 

6 hours following flooding. Accurate estimations of hydraulic conductivity within 

saltmarsh sediments are difficult to obtain due to the compressibility and potentially 

anisotropic and heterogeneous nature of saltmarsh sediment (Hemond and Fifield, 

1982; Knott et al., 1987; Surridge et al., 2005).  Therefore, data are used to assess 

relative differences in drainage characteristics between the DE and NAT saltmarsh. 

 

 

RESULTS 

Sediment properties 

Core-aggregated physical sediment properties are given in Table 1 and reveal 

significantly higher dry bulk density, lower moisture content and lower LOI (organic 

content) in the DE saltmarsh relative to NAT (Mann Whitney U, P < 0.05).  Vertical 

changes in sediment properties are examined in Figure 3. Moisture content and LOI 

decreased with depth in both NAT and DE saltmarshes, with a pronounced increase 

in the top 5 cm of the DE saltmarsh.  Bulk density is relatively uniform with depth 

within the NAT saltmarsh, but increases with depth within DE, with a particularly 

sharp increase occurring in the top 5 cm of the sediment profile.  

 

Subsurface water levels  



Figure 4a/b presents water level time series from triplicate pressure transducers. 

Visually, both series show very similar tends, and appear to reflect tidal cycles.  

However, water levels were higher, but with less variability within the DE saltmarsh 

The magnitude of hydrological response within the two saltmarshes shows greatest 

similarity when water levels were high and when the marsh was inundated by surface 

flooding (i.e. spring tides), although this may reflect some infiltration of surface waters 

through the bentonite piezometer cap. Variability between the triplicate piezometers 

is likely to reflect small variations in the local microtopography of the saltmarsh. 

 

Triplicate water level series were then averaged to form a single 15-minute time 

series for each marsh (referred as NAT or DE). Descriptive statistics (Table 2) show 

higher mean and median water levels and lower standard deviation and range for the 

DE series. The distribution for the DE series was more distinctly bi-modal suggesting 

alternation between prolonged periods of particularly low and particularly high water 

levels in DE compared to a more gradual flooding/drainage pattern in the NAT 

saltmarsh.  The drainage test (Figure 5) revealed a longer recovery time for the DE 

saltmarsh; 3.5 hours compared to <1 hour for the NAT saltmarsh, suggesting that 

drainage of floodwaters in DE sediments is impeded relative to NAT. 

 

Figure 6a plots the relationship between NAT and DE water levels for the triplicate-

averaged 15-minute time series. A linear regression was fitted to the data to assess 

the ability of the NAT site to predict the behaviour of the DE site.  The trend had an 

R2 value of 0.73 but visual inspection suggests that at lower water levels (< 285 cm) 

the difference between the time series may be non-linear.  

Differencing (one order) averaged NAT and DE series was performed to produce a 

cross correlation function (CCF) (Figure 6b) in order to identify whether there was a 

clear time-lag that differentiates the two series. The CCF showed strong positive 

correlations between -1 and 1 lags (i.e. +/- 0-29 minutes), indicating that there may 



be some variability in timing of hydrological fluctuations between the two series, but 

the strongest correlation between the time series occurs at zero lags and the CCF 

does not suggest a clear and persistent time-lag.  Significant positive correlations 

also occur at +/-50 lags (i.e. 12.5 hours) representing the periodic (‘seasonal’) 

influence of the tidal cycle.   

 

Temporal structure of subsurface hydrological time series 

To explore the differences between the two series further a bivariate ARIMA transfer 

function model was fitted using SPSS v.20 Expert Modeler. The triplicate-averaged 

NAT series was used as the ‘input’ variable and the triplicate-averaged DE series as 

the ‘output’ component. In order to meet requirements for equal variance and a 

normal distribution both datasets were transformed using natural logarithm (Gurnell 

and Fenn, 1984).  

The resulting transfer function model (0,1,6 1,0,050) accounted for autocorrelation 

(Ljung-Box Q statistic P>0.05) and provided a good fit (R2=0.99 and RMSE=0.001) 

The transfer function identified a complex and dynamic relationship consisting of 2 

significant numerator parameters (at lags 0 and 2) and denominator parameters (at 

lags 1, 2) which indicates ‘current’ water levels in DE are correlated with water levels 

in NAT occurring both simultaneously and 15 and 30 minutes previously, whilst a 

delay parameter of 0 confirms the absence of a time lag between the two series 

(consistent with the CCF in Figure 6b).  

Using this transfer function model, step changes in the NAT series were manipulated 

to display positive and negative step changes of 1 cm, 10 cm and 100 cm and then 

compared with the predicted responses in the DE series. According to the model, 

rising water levels in the DE series typically equates to 56% of the fluctuation 

observed in the NAT series over a 30-minute period (e.g. a 10 cm increase in the 

NAT series corresponds to a 5.6 cm rise in the DE series). Meanwhile falling water 

levels in the DE series correspond to 70% of the fluctuation observed in the NAT 



series over a 30-minute period indicating that the greatest differences between the 

two series occur during rising water levels. The predicted model did not reveal a 

significant lag indicating that both time series corresponded with simultaneous 

fluctuations in water levels over the predicted 15-minute periods. The weakest 

response in the predicted DE series was observed during smaller fluctuations (1cm) 

in the NAT series, which corresponded with a 0.23cm (23%) rise in the same 15-

minute period. 

Event-scale hydrographs and hysteresis 

Given the apparent influence of antecedent conditions (flooding/ drainage) on the 

difference in water levels between the two saltmarshes, individual spring flood-ebb 

tidal cycles (13 cycles) were examined in closer detail.  Analysis focused on flood-

ebb cycles at spring tides when the instrumented DE and NAT saltmarshes were 

submerged at high tide.  A threshold value (water level = 275 cm) in the NAT series 

was used to identify events with surface or near surface flooding.  Data were visually 

examined using water level hydrographs and hysteresis plots showing the 

relationship between NAT and DE water levels.  The 13 cycles were classified into 

five styles of hysteresis relationship and example plots for each style are provided in 

Figure 7.  The occurrence of each style is identified on Figure 4. The time to peak for 

NAT and DE hydrographs did not differ by more than 15-minutes across all cycles 

and did not show any variation with hysteresis style. 

 

The style of hysteresis that characterises the largest number of cycles was a counter-

clockwise loop (style “A” closed loop; six cycles and style “B” open loop; three cycles).  

For a given ‘reference’ water level in the NAT saltmarsh, in both of these styles, 

water levels in the DE marsh were higher on the falling limb (ebb) compared to the 

rising limb (flood) and water levels in the NAT saltmarsh drain gradually. For style “A”, 

which occurs during the latter part of the spring tidal regime following periods of 

frequent inundation (see Figure 4), DE water levels returned to pre-flood elevations 



relatively rapidly towards the end of the cycle, whilst for style “B”, which occurs in the 

early stages of spring tidal regime, DE water levels remained elevated and static for 

a prolonged period.  A further three cycles (style “C”) were characterised by a low 

magnitude fluctuation in water levels within NAT but no perceptible change in DE.  

Styles “A”, “B” and “C” all suggest different flow pathways during drainage for the DE 

and NAT saltmarsh, and/or impeded drainage for the DE saltmarsh.  A further cycle 

(style “D”), was characterised by a clockwise figure of eight hysteresis pattern. Tidal 

gauge data suggest that this corresponds to a single surge event, which may explain 

the apparent prolonged drainage in both DE and NAT saltmarshes. The remaining 

cycle is characterised by a counter-clockwise figure of 8 pattern (style “E”) but is not 

explained by any meteorological changes. 

 

DISCUSSION 

Physical sediment properties and sediment structure 

When saltmarshes are embanked, drained and compacted due to agriculture, 

sediment structure and properties are modified (Hazelden and Boorman, 2001; 

Crooks et al. 2002; Garbutt and Boorman, 2009). Dewatering and organic matter 

mineralisation leads to increases in bulk density and decreases in porosity (Boorman 

et al. 2002) and when Ca-poor clays, such as those in SE England, are drained the 

clays disperse causing sediment fabric to collapse (Crooks and Pye, 2000; Crooks et 

al. 2002). These changes are not reversed once the land is de-embanked and 

flooded with saline water and inundation could result in further downwash of fine 

particles into the subsurface soil (MacPhail et al. 2010) further reducing porosity. 

These changes to sediment structure are confirmed by the significantly higher bulk 

density, lower moisture content and lower organic content values in the DE saltmarsh 

and are in agreement with data collected in both an earlier study at this site (Spencer 

et al. 2008) and other de-embanked and recreated saltmarshes (Crooks and Pye, 

2000; Hazelden and Boorman, 2001; Burden et al. 2013).  



 

In the DE saltmarsh, there is a pronounced change in bulk density, moisture content 

and organic content at c. 5 cm depth suggesting that the subsurface environment 

comprises two distinct sediment layers; relict, altered agricultural soils, overlain by 

newly deposited marine sediment. These two units have different physical sediment 

properties and hence are likely to have different hydrological characteristics in terms 

of water conveyance and storage. In addition, neither of these sediment units have 

the same physical properties as the NAT saltmarsh. This is consistent with 

observations of a subsurface aquaclude-like horizon resulting from the legacy of 

drainage and agricultural land-use in de-embanked saltmarshes (Crooks and Pye, 

2000; Hazeldon and Boorman, 2001; Boorman et al., 2002) and confirms that 

modifications to subsurface sediment structure persist for decades following 

recreation. 

 

Hydrological functioning 

Pathways and rates of subsurface flow in saltmarshes are complex and controlled by 

a range of factors including tidal and groundwater flows, precipitation and 

evapotranspiration (Nuttle and Hemond, 1988), which are in turn moderated by 

physical sediment characteristics including sediment type, marsh morphology, 

macropores (from e.g. bioturbation, bioirrigation and roots) and sediment stratigraphy 

(Gardner 2005; 2007; Xin et al., 2009; 2012). Specifically, sediment properties and 

structure govern hydraulic properties including conductivity and storativity and have 

been found to influence the processes of infiltration and drainage of tidal waters 

(Harvey and Nuttle, 1995).  

 

Here, time series analysis and drainage tests demonstrate that the DE saltmarsh is 

characterised by overall higher subsurface water levels, lower variability in water 



levels, reduced water conveyance rates and a simpler time series structure indicating 

a damped response to tidal flooding. These characteristics suggest significantly 

different hydrological functioning between the two marshes potentially caused by 

lower storativity and reduced hydraulic conductivity in the underlying DE sediment.  

The observed modifications to sediment structure in the relict agricultural soils in DE 

saltmarshes could influence water conveyance and storage in a number of ways. 

Firstly, clay dispersion, organic matter mineralisation and compaction reduces matrix 

porosity which will decrease hydraulic conductivity, one of the most important 

physical controls on drainage (Knott et al., 1987). Secondly, compaction and tillage 

can reduce the frequency and size of macropores, which also affects subsurface 

water flow rates and reduces the volume of water stored in saltmarsh sediments 

(Harvey and Nuttle, 1995; Hughes et al., 1998). Finally, where sediments are 

compacted there are likely to be fewer burrowing fauna and/or flora, further reducing 

the macro-porewater flow rates (Xin et al., 2009). Field evidence obtained by Harvey 

and Nuttle (1995) suggest that during tidal inundation, infiltration of marsh sediments 

occurs through macropores whilst evapotranspiration and drainage occurs 

predominately in the finer matrix pores. This could explain greater differences 

between DE and NAT marshes occurring during rising water levels (as found in the 

ARIMA analysis) as compacted de-embanked sediments have a lower frequency 

and/or size of macropores, therefore a greater proportion of water is held at higher 

tensions present within the matrix (Hazelden and Boorman, 2001).  

 

Detailed examination of individual tidal cycles (event-scale hydrographs and 

hysteresis) suggest different flow pathways in the DE and NAT saltmarsh. Generally, 

the NAT saltmarsh drains gradually (e.g. hysteresis styles ‘A” and “B”) reflecting 

steady exfiltration and a greater influence of slower subsurface matrix pore flow 

pathways (Figure 7).  However, the DE shows two styles of drainage. Towards the 

end of the spring tide regime following periods of frequent inundation (Style “A”) the 



DE drains slowly at first and then very rapidly towards the end of the tidal cycle. 

Subsurface infiltration through matrix porosity in these structurally altered sediments, 

is likely to be extremely slow. Therefore, this may suggest initial downwards 

infiltration through the upper marine sediment unit (showing similar drainage 

characteristics to the NAT saltmarsh) and then rapid horizontal drainage along the 

relict agricultural land-surface towards the creeks. This is supported by observations 

from Orplands Farm field site of water flowing off the relict agricultural land-surface 

(Figure 1). In the early stages of the spring tidal regime, when there have been no 

high tide events capable of achieving surface flooding, water levels in the DE 

saltmarsh initially drop rapidly and then remain elevated and static for a long time 

(style “B”). In the absence of surface flooding, impeded subsurface flow in the 

compacted DE saltmarsh sediments may result in this damped response, or in the 

case of style “C” (Figure 7) no perceptible response in subsurface water levels.   

 

Figure 8 provides a conceptual model summarising these processes and the 

impeded subsurface flows in the DE marsh under different antecedent conditions.  

When surface flooding dominates (Figure 8a) e.g. during spring tides the NAT 

saltmarsh is characterised by rapid vertical infiltration of surface water through 

sediments with low bulk density, high moisture content (indicative of storativity) and 

the presence of macropores (roots and burrows). Porewater then flows along a 

hydraulic gradient influenced by saltmarsh morphology and creek networks. In the 

DE saltmarsh, initial downwards infiltration occurs through newly deposited marine 

sediment. However when the porewater intercepts the relict agricultural land surface, 

further downwards infiltration is impeded creating horizontal flows in the near-surface 

environment. As a result, surface sediments may become fully saturated promoting 

horizontal surface flows. Vertical water movement in the subsurface zone is 

significantly impaired, leading to reduced groundwater inputs and exchange. In the 

absence of surface flooding (e.g. neap tides) subsurface flows are dominated by 



groundwater movements (Figure 8b). In the NAT saltmarsh water levels fluctuate in 

response to tidal forcing. However, in the DE saltmarsh there is limited groundwater 

movement resulting in a damped response to tidal forcing. 

 

Although this study is limited to one site with sampling focused in high elevation 

marsh, numerous studies (Crooks and Pye 2000; Hazelden and Boorman, 2001; Ellis 

and Atherton 2003) have found evidence of a similar compacted relict, horizon 

across the saltmarsh profile which persists for decades after restoration (Boorman et 

al., 2002). Therefore, it is reasonable to assume that differences in water levels and 

fluctuations would also be observed at lower elevations of Orplands recreated marsh 

where evidence of the compacted relict horizon has been found by Spencer et al. 

(2008), as well as other recreated marshes with similar sediment characteristics. 

Further research should be conducted at wider scales to investigate the precise 

effect of these sediments on the hydrological functioning of other recreated marshes. 

 

Implications for ecosystem service delivery 

Recreated saltmarshes are expected to deliver improved biodiversity and flood 

hazard regulation (Jones et al., 2011). Increasingly, it is also hoped that they can 

provide biogeochemical benefits through waste processing, nutrient cycling and 

climate regulation (Andrews et al., 2006). Subsurface water flow influences 

numerous physical, biogeochemical and ecological processes in saltmarshes, 

controlling for example, soil aeration, delivery of nutrients and removal of metabolites 

(Nuttle and Hemond, 1988) and impeded water conveyance with relatively elevated 

water levels in the de-embanked marsh could have significant impacts on the quality 

and quantity of ecosystem services delivered by recreated marshes.  

 

Saltmarshes provide flood hazard regulation through the storage of flood-waters, 

however this research has shown that the DE marsh has relatively lower fluctuations 



and elevated water levels with lower moisture content of underlying sediments 

indicating that the overall storage capacity of the recreated marsh may be reduced. 

Therefore, recreated saltmarshes may not offer the same level of flood hazard 

regulation as natural saltmarshes. 

 

Elevation is frequently considered the most important design criterion in saltmarsh 

restoration and recreation, and as long as the hydroperiod is right, successful habitat 

development will follow (Garbutt and Wolters, 2008). Yet, there is increasing 

evidence to suggest that abiotic conditions at the sediment surface, such as anoxia 

and high salinity, can result in poorer/slower than expected vegetation development 

on recreated saltmarshes (Erfanzadeh et al., 2010; Mossman et al., 2012a; 2012b). 

In addition, compacted sediment may hinder the development of macrophytes with 

deep root systems (Callaway, 2001) whilst differences in sediment properties may 

impact the invertebrate community that develops (Mazik et al., 2010). Elevated water 

levels and reduced fluctuations of water levels in the DE marsh limit the re-

oxygenation of sediments and are likely to have a significant impact upon 

biogeochemical processes and marsh vegetation (Nuttle et al., 1990; Montalto et al., 

2006). Consequently, the modifications to sediment structure and subsurface water 

flow observed here may have significant impacts on habitat development and the 

provision of species diversity. 

 

CONCLUSION 

This research provides the first detailed comparison of subsurface water levels in de-

embanked and natural coastal saltmarshes in the UK. Very different sediment 

characteristics and hydrological conditions are identified in the recreated marsh 

relative to an adjacent reference natural saltmarsh which is likely to reflect physical 

disturbance to marsh sediment structure, caused by previous land management. In 

particular, subsurface water level fluctuations are reduced, with poor vertical 



hydrological connectivity and a likely prevalence of rapid lateral near-surface 

porewater flows in the recreated saltmarsh. This may create barriers to the 

development of natural physical, chemical and ecological processes within recreated 

sites with implications for ecosystem service delivery including wild species diversity 

and flood hazard regulation.  Whilst recreated saltmarshes may be expected to 

develop over long timescales, it is vital that the potential barriers to the development 

of a fully functioning ecosystem are understood, particularly within the context of 

increasing emphasis on accurate valuation of ecosystem services.  Further research 

is now required to explore hydrological functioning within recreated saltmarshes 

across a gradient of morphological, sediment and land use characteristics in order to 

evaluate the extent and significance of alterations to hydrological functioning and the 

implications for key ecosystem services. 
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Figure 1. Photograph displaying two distinct sediment horizons at Orplands de-

embanked saltmarsh and illustrating the resulting effects on morphology/hydrology.  

 

Figure 2. Location of level-loggers and barologger within de-embanked and adjacent 

natural marsh at the Orplands Farm field site.  

 

Figure 3. Vertical profiles showing mean (n = 3) sediment properties within the NAT 

and DE marsh: (a) bulk density, (b) moisture content, (c) LOI. 

 

Figure 4. Water level time series from triplicate loggers positioned within the natural 

(a) and de-embanked (b) marsh at Orplands Farm.  Letters A-E identify the selected 

hysteresis cycles analysed in Figure 7.  

 

Figure 5. Drainage test results for a randomly selected piezometer in each of the 

NAT and DE marshes during a low neap tide over a duration of 6:5 hours. 

 



Figure 6. (a) Scatterplot showing the relationship between water levels recorded 

simultaneously in the NAT and DE marsh and (b) cross correlation function for NAT 

and DE time series. 

 

Figure 7. Illustration of the four types of hysteresis styles and associated water level 

hydrographs.  A; Closed counter-clockwise loop, B; Open counter-clockwise loop, C; 

Unresponsive DE, D; Clockwise figure of 8, E; Counter clockwise figure of 8.  

 

Figure 8. Conceptual model illustrating altered drainage patterns in the de-embanked 

saltmarsh relative to the natural saltmarsh.  Block arrows represent subsurface 

(groundwater) inputs, with thinner arrows representing impeded flows.  Line arrows 

represent surface flooding inputs.  
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Table 1. Sediment profile data for sediment cores derived from NAT and DE marsh 

(n=21). 

 

Dry bulk density (g cm-3) Moisture content (%) LOI (%) 

Mea

n 
Max Min 

Std. 

Dev. 

Mea

n 
Max Min 

Std. 

Dev. 

Mea

n 
Max Min 

Std. 

Dev. 

NA

T 
0.54 0.78 0.41 0.08 124 166 82 18 16 25 8 4 

DE 1.13 1.50 0.43 0.28 38 148 26 32 8 25 4 5 

 

 

Table 2. Descriptive statistics for DE and NAT subsurface time series.  

 DE NAT 

n 2976 2976 

Mean (cm) (S.E.) 284.81 (0.09) 264.67 (0.13) 

Median (cm)  286.51 263.66 

Std. Dev. (cm) 4.64 6.99 

Range (cm) 48.92 65.93 

Skewness 0.67 1.77 

Kurtosis 6.76 8.26 
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