66 research outputs found

    On-board processing for telecommunications satellites

    Get PDF
    In this decade, communications satellite systems will probably face dramatic challenges from alternative transmission means. To balance and overcome such competition, and to prepare for new requirements, INTELSAT has developed several on-board processing techniques, including Satellite-Switched TDMA (SS-TDMA), Satellite-Switched FDMA (SS-FDMA), several Modulators/Demodulators (Modem), a Multicarrier Multiplexer and Demodulator MCDD), an International Business Service (IBS)/Intermediate Data Rate (IDR) BaseBand Processor (BBP), etc. Some proof-of-concept hardware and software were developed, and tested recently in the INTELSAT Technical Laboratories. These techniques and some test results are discussed

    On the modulation of RR Lyrae stars in the globular cluster M3

    Full text link
    A new, extended time-series photometry of M3 RR Lyrae stars has revealed that four of the ten double-mode stars show large-amplitude Blazhko modulation of both radial modes. The first, detailed analysis of the peculiar behavior of the unique, Blazhko RRd stars is given. While the P1/P0 period ratio is normal, and the overtone mode is dominant in the other RRd stars of the cluster, the period ratio is anomalous and the fundamental mode has a larger (or similar) mean amplitude than the overtone has in Blazhko RRd stars. The modulations of the fundamental and overtone modes are synchronized only in one of the Blazhko RRd stars. No evidence of any connection between the modulations of the modes in the other three stars is found. The Blazhko modulation accounts, at least partly, for the previously reported amplitude and period changes of these stars. Contrary to the 50\sim50% Blazhko statistics of RRab and RRd stars, Blazhko modulation occurs only in 10% of the overtone variables in M3. Four of the five Blazhko RRc stars are bright, evolved objects, and one has a similar period and brightness as Blazhko RRd stars have. The regions of the instability strip with high and low occurrence rate of the Blazhko modulation overlap with the regions populated by first- and second-generation stars according to theoretical and observational studies, raising up the possibility that the Blazhko modulation occurs preferentially in first-generation RR Lyrae stars.Comment: 6 pages, 4 figures, accepted for publication in ApJ

    Blazhko modulation in the infrared

    Get PDF
    We present first direct evidence of modulation in the K band of Blazhko-type RR Lyrae stars that are identified by their secular modulations in the I-band data of Optical Gravitational Lensing Experiment-IV. A method has been developed to decompose the K-band light variation into two parts originating from the temperature and the radius changes using synthetic data of atmosphere-model grids. The amplitudes of the temperature and the radius variations derived from the method for non-Blazhko RRab stars are in very good agreement with the results of the Baade-Wesselink analysis of RRab stars in the M3 globular cluster confirming the applicability and correctness of the method. It has been found that the Blazhko modulation is primarily driven by the change in the temperature variation. The radius variation plays a marginal part, moreover it has an opposite sign as if the Blazhko effect was caused by the radii variations. This result reinforces the previous finding based on the Baade-Wesselink analysis of M3 (NGC 5272) RR Lyrae, that significant modulation of the radius variations can only be detected in radial-velocity measurements, which relies on spectral lines that form in the uppermost atmospheric layers. Our result gives the first insight into the energetics and dynamics of the Blazhko phenomenon, hence it puts strong constraints on its possible physical explanations

    Blazhko modulation in the infrared

    Get PDF
    We present first direct evidence of modulation in the KK-band of Blazhko-type RR Lyrae stars that are identified by their secular modulations in the I-band data of OGLE-IV. A method has been developed to decompose the KK-band light variation into two parts originating from the temperature and the radius changes using synthetic data of atmosphere-model grids. The amplitudes of the temperature and the radius variations derived from the method for non-Blazhko RRab stars are in very good agreement with the results of the Baade-Wesselink analysis of RRab stars in the M3 globular cluster confirming the applicability and correctness of the method. It has been found that the Blazhko modulation is primarily driven by the change in the temperature variation. The radius variation plays a marginal part, moreover it has an opposite sign as if the Blazhko effect was caused by the radii variations. This result reinforces the previous finding based on the Baade-Wesselink analysis of M3 (NGC 5272) RR Lyrae, that significant modulation of the radius variations can only be detected in radial-velocity measurements, which relies on spectral lines that form in the uppermost atmospheric layers. Our result gives the first insight into the energetics and dynamics of the Blazhko phenomenon, hence it puts strong constraints on its possible physical explanations.Comment: 16 pages, accepted for publication in MNRA

    Overtone and multi-mode RR Lyrae stars in the globular cluster M3

    Get PDF
    The overtone and multi-mode RR Lyrae stars in the globular cluster M3 are studied using a 200-d long, B,VB,V and ICI_{\mathrm C} time-series photometry obtained in 2012. 70\% of the 52 overtone variables observed show some kind of multi-periodicity (additional frequency at f0.61=f1O/0.61{f_{0.61}}={f_{\mathrm {1O}}}/0.61 frequency ratio, Blazhko effect, double/multi-mode pulsation, period doubling). A signal at 0.587 frequency ratio to the fundamental-mode frequency is detected in the double-mode star, V13, which may be identified as the second radial overtone mode. If this mode-identification is correct, than V13 is the first RR Lyrae star showing triple-mode pulsation of the first three radial modes. Either the Blazhko effect or the f0.61{f_{0.61}} frequency (or both of these phenomena) appear in 7 double-mode stars. The P1O/PFP_{\mathrm{1O}}/P_{\mathrm{F}} period ratio of RRd stars showing the Blazhko effect are anomalous. A displacement of the main frequency component at the fundamental-mode with the value of modulation frequency (or its half) is detected in three Blazhko RRd stars parallel with the appearance of the overtone-mode pulsation. The f0.61{f_{0.61}} frequency appears in RRc stars that lie at the blue side of the double-mode region and in RRd stars, raising the suspicion that its occurrence may be connected to double-mode pulsation. The changes of the Blazhko and double-mode properties of the stars are also reviewed using the recent and archive photometric data.Comment: accepted for publication in ApJ Suppl. 26 pages, 25 figure

    HAT-P-13: a multi-site campaign to detect the transit of the second planet in the system

    Get PDF
    A possible transit of HAT-P-13c has been predicted to occur on 2010 April 28. Here we report on the results of a multi-site campaign that has been organised to detect the event. CCD photometric observations have been carried out at five observatories in five countries. We reached 30% time coverage in a 5 days interval centered on the suspected transit of HAT-P-13c. Two transits of HAT-P-13b were also observed. No transit of HAT-P-13c has been detected while the campaign was on. By a numerical experiment with 10^5 model systems we conclude that HAT-P-13c is not a transiting exoplanet with a significance level from 65% to 72%, depending on the planet parameters and the prior assumptions. We present two times of transit of HAT-P-13b ocurring at BJD 2455141.5522 +- 0.0010 and BJD 2455249.4508 +- 0.0020. The TTV of HAT-P-13b is consistent with zero within 0.001 days. The refined orbital period of HAT-P-13b is 2.916293 +- 0.000010 days.Comment: 5 pages, 4 figures, to be accepted by A&

    Bonding in MgSi and AlMgSi Compounds Relevant to AlMgSi Alloys

    Full text link
    The bonding and stability of MgSi and AlMgSi compounds relevant to AlMgSi alloys is investigated with the use of (L)APW+(lo) DFT calculations. We show that the β\beta and β\beta'' phases found in the precipitation sequence are characterised by the presence of covalent bonds between Si-Si nearest neighbour pairs and covalent/ionic bonds between Mg-Si nearest neighbour pairs. We then investigate the stability of two recently discovered precipitate phases, U1 and U2, both containing Al in addition to Mg and Si. We show that both phases are characterised by tightly bound Al-Si networks, made possible by a transfer of charge from the Mg atoms.Comment: 11 pages, 30 figures, submitted to Phys. Rev.

    Multicolour CCD photometry of the variable stars in globular cluster M3

    Get PDF
    We present time series data on the variable stars of the galactic globular cluster Messier 3 (M3). We give BVI light curves for 226 RR Lyrae, 2 SX Phe and 1 W Vir type variables, along with estimated fundamental photometric parameters such as intensity and magnitude-averaged brightness and pulsation periods. In some cases the periods we have found significantly differ from the previously published ones. This is the first published light curve and period determination for variable V266. The I-band light curve has not been observed previously for numerous (76) variables. Three new RR Lyrae variables have been discovered. Groups of RR Lyrae variables that belong to different evolutionary stages and have been separated previously on the basis of V data were found here for all colours and colour indices by cluster analysis. The I-band period -- luminosity relation is also discussed. From the 66 modulated (Blazhko type) RR Lyrae stars we investigated, six are newly identified and two of them are first overtone pulsators. In the case of 13 RR Lyrae, the period of Blazhko cycle has been estimated for the first time. V252 is identified as a new RRd variable. Amplitude ratio of RRd stars have been investigated to search possible mode content changes. In contrast to previous publications no changes have been found. Problems with the sampling of the time series of typical cluster variability surveys is demonstrated.Comment: 24 pages, 15 figures, 8 tables. Accepted by MNRAS on 18. August 200

    Kepler observations of variability in B-type stars

    Full text link
    The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies characteristic of SPB stars. Seven of these stars also show a few weak, isolated high frequencies and they could be considered as SPB/beta Cep hybrids. In all cases the frequency spectra are quite different from what is seen from ground-based observations. We suggest that this is because most of the low frequencies are modes of high degree which are predicted to be unstable in models of mid-B stars. We find that there are non-pulsating stars within the beta Cep and SPB instability strips. Apart from the pulsating stars, we can identify stars with frequency groupings similar to what is seen in Be stars but which are not Be stars. The origin of the groupings is not clear, but may be related to rotation. We find periodic variations in other stars which we attribute to proximity effects in binary systems or possibly rotational modulation. We find no evidence for pulsating stars between the cool edge of the SPB and the hot edge of the delta Sct instability strips. None of the stars show the broad features which can be attributed to stochastically-excited modes as recently proposed. Among our sample of B stars are two chemically peculiar stars, one of which is a HgMn star showing rotational modulation in the light curve.Comment: 19 pages, 11 figures, 4 table
    corecore