3 research outputs found

    An innovative approach to using an intensive field course to build scientific and professional skills

    Get PDF
    This paper reports on the design and evaluation of Field Studies in Functional Ecology (FSFE), a two-week intensive residential field course that enables students to master core content in functional ecology alongside skills that facilitate their transition from “student” to “scientist.” We provide an overview of the course structure, showing how the constituent elements have been designed and refined over successive iterations of the course. We detail how FSFE students: (1) Work closely with discipline specialists to develop a small group project that tests an hypothesis to answer a genuine scientific question in the field; (2) Learn critical skills of data management and communication; and (3) Analyze, interpret, and present their results in the format of a scientific symposium. This process is repeated in an iterative “cognitive apprenticeship” model, supported by a series of workshops that name and explicitly instruct the students in “hard” and “soft” skills (e.g., statistics and teamwork, respectively) critically relevant for research and other careers. FSFE students develop a coherent and nuanced understanding of how to approach and execute ecological studies. The sophisticated knowledge and ecological research skills that they develop during the course is demonstrated through high-quality presentations and peer-reviewed publications in an open-access, student-led journal. We outline our course structure and evaluate its efficacy to show how this novel combination of field course elements allows students to gain maximum value from their educational journey, and to develop cognitive, affective, and reflective tools to help apply their skills as scientists.publishedVersio

    Leaf-level photosynthetic capacity in lowland Amazonian and high-1 elevation, Andean tropical moist forests of Peru

    No full text
    We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax), and the maximum rate of electron transport (Jmax)), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (Ma, Na and Pa, respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO2-fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa, the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests
    corecore