1,901 research outputs found

    Evaluation of Overall Survival (OS) and Event-Free Survival (EFS) of paediatric sarcoma patients at a single institution

    Get PDF
    Aims: To evaluate OS and EFS of paediatric sarcoma patients with an interest in comparing metastatic cases with non-metastatic cases, and compiling statistics on treatment methods. Methods: Information was obtained from patient notes in the Schiehallion ward. These contained information about diagnosis, treatment, prognostic indicators, and outcomes for each patient. Results: 56 patients, 2001-2008. Osteosarcoma: 11 patients, 7♂, 4♀; age range: 4-16; = 10; OS = 64%, EFS = 55%; Primary site of disease: Femur (47%), Tibia (41%), Humerus (5.5%), Scapula (5.5%), Other (1%); Metastatic Rate = 27% (OS = 0%). Ewing’s sarcoma: 24 patients, 10♂, 14♀; age range: 1-16, = 12; OS = 71%, EFS = 58%; Primary site of disease: Pelvis (29%), Femur (22%), Paraspinal (16%), Chest Wall (10%), Tibia (10%), Other (13%); Metastatic Rate = 21% (OS = 40%; EFS = 40%); Alveolar rhabdomyosarcoma: 10 patients; OS= 80%, EFS = 60%; Metastatic Rate = 20% (OS = 100%; EFS = 100%). Embryonal rhabdomyosarcoma: 11 patients; OS = 73%, EFS = 73%; Metastatic Rate = 0%. Conclusions: Our results reflect access to an experienced and innovative paediatric sarcoma service with close links to a national Sarcoma MDT. The data falls in line with other studies in terms of age of onset, location of primary tumour, metastatic rate, site of metastases, and prognosis for all cancer types. Limb salvage surgery is greatly favoured over amputation for both osteosarcoma and Ewing’s sarcoma. Females have a more favourable prognosis in osteosarcoma and a slightly poorer prognosis in Ewing’s sarcoma. Yorkhill’s overall survival rates are currently better than the UK-wide statistic for three of the four tumours examined.</p

    Pseudo-critical clusterization in nuclear multifragmentation

    Get PDF
    In this contribution we show that the biggest fragment charge distribution in central collisions of Xe+Sn leading to multifragmentation is an admixture of two asymptotic distributions observed for the lowest and highest bombarding energies. The evolution of the relative weights of the two components with bombarding energy is shown to be analogous to that observed as a function of time for the largest cluster produced in irreversible aggregation for a finite system. We infer that the size distribution of the largest fragment in nuclear multifragmentation is also characteristic of the time scale of the process, which is largely determined by the onset of radial expansion in this energy range.Comment: 4 pages, 3 figures, Contribution to conference proceedings of the 25th International Nuclear Physics Conference (INPC 2013

    Demodulation of Spatial Carrier Images: Performance Analysis of Several Algorithms Using a Single Image

    Get PDF
    http://link.springer.com/article/10.1007%2Fs11340-013-9741-6#Optical full-field techniques have a great importance in modern experimental mechanics. Even if they are reasonably spread among the university laboratories, their diffusion in industrial companies remains very narrow for several reasons, especially a lack of metrological performance assessment. A full-field measurement can be characterized by its resolution, bias, measuring range, and by a specific quantity, the spatial resolution. The present paper proposes an original procedure to estimate in one single step the resolution, bias and spatial resolution for a given operator (decoding algorithms such as image correlation, low-pass filters, derivation tools ...). This procedure is based on the construction of a particular multi-frequential field, and a Bode diagram representation of the results. This analysis is applied to various phase demodulating algorithms suited to estimate in-plane displacements.GDR CNRS 2519 “Mesures de Champs et Identification en MĂ©canique des Solide

    Discovery of very high energy gamma-rays from the flat spectrum radio quasar 3C 279 with the MAGIC telescope

    Full text link
    3C 279 is one of the best studied flat spectrum radio quasars located at a comparatively large redshift of z = 0.536. Observations in the very high energy band of such distant sources were impossible until recently due to the expected steep energy spectrum and the strong gamma-ray attenuation by the extragalactic background light photon field, which conspire to make the source visible only with a low energy threshold. Here the detection of a significant gamma-ray signal from 3C 279 at very high energies (E > 75 GeV) during a flare in early 2006 is reported. Implications of its energy spectrum on the current understanding of the extragalactic background light and very high energy gamma-ray emission mechanism models are discussed.Comment: 4 pages, 6 figures, submitted to proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    The asteroseismic ground-based observational counterpart of CoRoT

    Full text link
    We present different aspects of the ground-based observational counterpart of the CoRoT satellite mission. We give an overview of the selected asteroseismic targets, the numerous instruments and observatories involved, and the first scientific results.Comment: 3 pages, 2 tables, 1 figure, to be published in the conference proceedings 'Stellar Pulsation: Challenges for Theory and Observation' (31 May - 5 June, Santa Fe, New Mexico, US), publishers: American Institute of Physic

    A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

    Full text link
    Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the buildup of stellar mass in low-metallicity systems. We present the first VLT/MUSE optical IFU observations of the interacting dwarf pair dm1647+21, selected from the TiNy Titans survey. The Hα\alpha emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M⊙_{\odot} yr−1^{-1}, 2.7 times higher than the SFR inferred from SDSS data. The implied specific SFR (sSFR) for the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of >> 50. Examining the spatially-resolved maps of classic optical line diagnostics, we find the ISM excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies: rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus be more distributed.Comment: Accepted for publication in ApJ. 11 pages, 5 figures, 1 table. Figures slightly degraded to meet arXiv size restrictions. For more information about TiNy Titans see https://lavinia.as.arizona.edu/~tinytitans

    Disconnected contributions to the spin of the nucleon

    Get PDF
    The spin decomposition of the proton is a long-standing topic of much interest in hadronic physics. Lattice QCD has had much success in calculating the connected contributions to the quark spin. However, complete calculations, which necessarily involve gluonic and strange-quark contributions, still present some challenges. These "disconnected" contributions typically involve small signals hidden against large statistical backgrounds and rely on computationally intensive stochastic techniques. In this work we demonstrate how a Feynman-Hellmann approach may be used to calculate such quantities, by measuring shifts in the proton energy arising from artificial modifications to the QCD action. We find a statistically significant non-zero result for the disconnected quark spin contribution to the proton of about -5% at a pion mass of 470 MeV

    New Exclusion Limits for the Search of Scalar and Pseudoscalar Axion-Like Particles from "Light Shining Through a Wall"

    Full text link
    Physics beyond the Standard Model predicts the possible existence of new particles that can be searched at the low energy frontier in the sub-eV range. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles", such as axion or Axion-Like Particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. In 2014, this experiment has been run with an outstanding sensitivity, using an 18.5 W continuous wave laser emitting in the green at the single wavelength of 532 nm. No regenerated photons have been detected after the wall, pushing the limits for the existence of axions and ALPs down to an unprecedented level for such a type of laboratory experiment. The di-photon couplings of possible pseudo-scalar and scalar ALPs can be constrained in the nearly massless limit to be less than 3.5⋅10−83.5\cdot 10^{-8} GeV−1^{-1} and 3.2⋅10−83.2\cdot 10^{-8} GeV−1^{-1}, respectively, at 95% Confidence Level.Comment: 6 pages, 6 figure
    • 

    corecore