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We present the results of the first lattice QCD calculation of the K → π matrix elements of the
chromomagnetic operatorOCM ¼ gs̄σμνGμνd, which appears in the effective Hamiltonian describingΔS ¼ 1

transitions in and beyond the standard model. Having dimension five, the chromomagnetic operator is
characterized by a rich pattern of mixing with operators of equal and lower dimensionality. The multiplicative
renormalization factor as well as the mixing coefficients with the operators of equal dimension have been
computed at one loop in perturbation theory. The power divergent coefficients controlling the mixing with
operators of lower dimension have been determined nonperturbatively, by imposing suitable subtraction
conditions. The numerical simulations have been carried out using the gauge field configurations produced
by the European Twisted Mass Collaboration with Nf ¼ 2þ 1þ 1 dynamical quarks at three values of the
lattice spacing. Our result for the B parameter of the chromomagnetic operator at the physical pion and kaon
point is BKπ

CMO ¼ 0.273ð69Þ, while in the SU(3) chiral limit we obtain BCMO ¼ 0.076ð23Þ. Our findings are
significantly smaller than the model-dependent estimate BCMO ∼ 1–4, currently used in phenomenological
analyses, and improve the uncertainty on this important phenomenological quantity.

DOI: 10.1103/PhysRevD.97.074501

I. INTRODUCTION

At low energy with respect to the electroweak scale, the
standard model (SM) and its possible new physics (NP)
extensions are described by an effective Hamiltonian
in which the contribution of operators of dimension d ¼
4þ n are suppressed by n powers of the high-energy
(i.e. the electroweak or NP) scale. In the flavor changing
ΔS ¼ 1 sector, the effective Hamiltonian contains four
operators of dimension d ¼ 5—two electromagnetic (EMO)
and two chromomagnetic (CMO) operators. Their contri-
bution to the physical amplitudes is, thus, suppressed by only

one power of the high-energy scale. The ΔS ¼ 1, d ¼ 5
effective Hamiltonian has the form

HΔS¼1;d¼5
eff ¼

X
i¼�

ðCi
γQi

γ þ Ci
gQi

gÞ þ H:c:; ð1Þ

whereQþ
γ;g (Q−

γ;g) are the parity-even (-odd) EMO and CMO,
respectively, defined as

Q�
γ ¼ Qde

16π2
ðs̄LσμνFμνdR � s̄RσμνFμνdLÞ;

Q�
g ¼ g

16π2
ðs̄LσμνGμνdR � s̄RσμνGμνdLÞ; ð2Þ

with qR;L ¼ 1
2
ð1� γ5Þq (for q ¼ s, d).

In Fig. 1, we show two examples of Feynman diagrams
generating, at low energy, the effective magnetic inter-
actions in the SM and beyond. For illustration of the NP
contribution, we have considered the case of SUSYmodels,
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in which the ΔS ¼ 1 transition occurs through the
exchange of virtual squarks and gluinos and is mediated
by the strong interactions.
Note that at least one mass insertion is required in the

diagrams, both in the SM and beyond, in order to induce the
chirality flip described by the magnetic operators.
A quick inspection of the diagrams of Fig. 1 shows that

the Wilson coefficients of the magnetic operators in the SM
and NP model are proportional to

CSM
γ;g ∼

αWðMWÞ
MW

ms

MW
; CNP

γ;g ∼
αsðMNPÞ
MNP

δLR; ð3Þ

where MNP represents the typical NP scale, e.g., the gluino
mass in the SUSY case, and the factors ms=MW and δLR are
generated in the diagrams by the mass insertion. In the
SUSY case, for instance, δLR represents the off-diagonal
matrix element of the squark mass matrix normalized to the
average squark mass. The transition rate is controlled in
the SM by the weak coupling αWðMWÞ. This is not generally
the case for NP models. In the SUSY transition shown in
Fig. 1, for example, the process is mediated by the strong
interactions. Therefore, the proportionality of CNP

γ;g in Eq. (3)
to the strong coupling constant αsðMNPÞ, rather than to the
weak coupling as in the SM, compensates in part for the
stronger high-energy scale suppression (MNP > MW) in
the NP model. Thus, the magnetic interactions receive
potentially large contributions from physics beyond the SM.
It is also worth noting that the chirality flipping factor

ms=MW , which appears in the Wilson coefficients of the
magnetic operators in the SM, is of the same size as
ΛQCD=MW , which represents the additional suppression
factor of the coefficients of dimension-six operators in
the effective Hamiltonian. For this reason, the role of the
magnetic operators tends to be marginal in the SM, while it
is potentially more relevant for the searches of NP.
The K → π matrix element of the EMO Qþ

γ , which is
relevant, for instance, for the CP violating part of the rare
KL → π0lþl− decays [1], has been computed on the lattice
both in the quenched [2] and unquenched Nf ¼ 2 [3] case.
Since the electromagnetic field strength tensor Fμν factor-
izes out of the hadronic matrix element, the lattice

computation only involves the quark bilinear operator
s̄σμνd, and it is relatively straightforward.
Computing the hadronic matrix elements of the CMOQ�

g

is, instead, by far more challenging. The main difficulty is
represented by the complicated renormalization pattern of
the operator, which also involves power divergent mixing
with operators of lower dimensionality (see Ref. [4] and
Sec. III). The relevant matrix elements with an initial kaon
involve one, two or three pions in the final states and are
of great phenomenological interest for various processes:
the long distance contribution to K0 − K̄0 mixing [5],
ΔI ¼ 1=2, K → ππ transitions and ε0=ε [1], CP violation
in K → 3π decays [6]. These matrix elements are para-
metrized in terms of suitably defined B parameters:

hπþjQþ
g jKþi ¼ 11

32π2
M2

KðpK · pπÞ
ms þmd

BKπ
CMO; ð4Þ

hπþπ−jQ−
g jK0i ¼ i

11

32π2
M2

KM
2
π

fπðms þmdÞ
BK2π
CMO; ð5Þ

hπþπþπ−jQþ
g jKþi ¼ −

11

16π2
M2

KM
2
π

f2πðms þmdÞ
BK3π
CMO: ð6Þ

At leading order (LO) in SU(3) chiral perturbation theory
(ChPT), the CMO has a single representation in terms of
pseudo-Goldstone boson fields [7],

Q�
g ¼ 11

256π2
f2πM2

K

ms þmd
BCMO½UðDμU†ÞðDμUÞ

�ðDμU†ÞðDμUÞU†�
23
; ð7Þ

where the low-energy constant BCMO is estimated to be
of order 1 in the chiral quark model of Ref. [7]. Therefore,
the three B parameters of Eqs. (4)–(6) are related by SU(3)
chiral symmetry, which predicts at LO their equality:
BKπ
CMO ¼ BK2π

CMO ¼ BK3π
CMO ¼ BCMO. Such an equality is

expected to be broken at higher orders in ChPT.
In this work, we evaluate the B parameter appearing in

Eq. (4) from the lattice QCD computation of the hπjQþ
g jKi

matrix element. We perform numerical simulations by
employing the gauge configurations generated by the
European Twisted Mass Collaboration (ETMC) with
Nf ¼ 2þ 1þ 1 dynamical quarks, which include in the
sea, besides two light mass-degenerate quarks, also the
strange and charm quarks with masses close to their
physical values [8–10]. The same gauge ensembles have
been used in Ref. [4] to determine nonperturbatively the
power divergent mixing coefficients controlling the mixing
of the CMO with operators of lower dimension. As for the
mixing coefficients with operators of the same dimension-
ality and for the multiplicative renormalization constant
(RC), we adopt the predictions of perturbation theory at one
loop obtained in Ref. [4].

FIG. 1. One-loop Feynman diagrams contributing at low
energy to the effective magnetic interactions, in the SM (left)
and beyond (right). In the latter case we have shown, for
illustrative purposes, the case of SUSY models. The crosses
denote a mass insertion.
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Preliminary results for the B parameter of the CMO have
been presented in Ref. [11], and our final result at the
physical pion and kaon point is

BKπ
CMO ¼ 0.273ð13Þð68Þ ¼ 0.273ð69Þ; ð8Þ

where the first error comes from the numerical lattice
simulations, while the second error accounts for the
perturbative uncertainty in the one-loop determination of
the multiplicative renormalization constant. Our result (8)
represents the first lattice QCD determination of a matrix
element of the CMO. In the SU(3) chiral limit we get
BCMO ¼ 0.076ð23Þ. Our findings are significantly smaller
than the model-dependent estimate BCMO ∼ 1–4 currently
used in phenomenological analyses [1] and improve the
uncertainty on this important phenomenological quantity.
The plan of the paper is as follows. In Sec. II, we

describe the lattice setup and give the simulation details. In
Sec. III, we recall the main results obtained in Ref. [4] on
the determination of the power-divergent mixing coeffi-
cients needed for the renormalization of the CMO. The
mixing subtraction is evaluated in Sec. IV, and it is shown
that the renormalized CMO correlator can be determined
with a remarkable level of precision. The lattice data for the
matrix elements of the renormalized CMO are presented in
Sec. V and analyzed in terms of both SU(2) and SU(3)
ChPT. Finally, Sec. VI contains our conclusions.

II. SIMULATION DETAILS

Our lattice setup is based on the gauge configurations
generated by ETMC with Nf ¼ 2þ 1þ 1 dynamical
quarks [8,9], adopted in Ref. [10] for the determination
of the up, down, strange and charm quark masses, using the

experimental value of the pion decay constant fπ to set the
lattice scale.1

The gauge fields are simulated using the Iwasaki gluon
action [12], while sea quarks are implemented with the
Wilson Twisted Mass Action at maximal twist [13–15]. In
order to avoid the mixing of strange and charm quarks
induced by lattice artifacts in the unitary twisted mass
formulation, we have adopted the mixed action setup
described in Ref. [16], where the valence strange quarks
are regularized as Osterwalder-Seiler (OS) fermions [17],
while the valence up and down quarks have the same action
as the sea. The use of different lattice regularisations for the
valence and sea quarks of the second generation preserves
unitarity in the continuum limit and brings no complica-
tions for the operator renormalization pattern in mass-
independent schemes, while producing only a modification
of discretization effects. Therefore, the uncertainty related
to the use of a nonunitary action at finite lattice spacing is
incorporated directly in the error due to discretization
effects, which will be addressed in Sec. V. Moreover, since
we work with both valence and sea quarks at maximal
twist, physical observables are guaranteed to be automati-
cally OðaÞ improved [15,16].
The details of the ETMC gauge ensembles with Nf ¼

2þ 1þ 1 dynamical quarks are collected in Table I, where
the number of the gauge configurations analyzed (Ncfg)
corresponds to a separation of 20 trajectories. The QCD
simulations are carried out at three different values of the
inverse bare lattice coupling β, to allow for a controlled

TABLE I. Parameters of the gauge ensembles and the values of the simulated sea and valence quark bare masses (in lattice units) used
in this work (see Ref. [10] for details). The values of the kaon mass, MK , do not correspond to a simulated strange bare quark mass
shown in the 8th column, but to the renormalized strange mass interpolated at the physical value,mphys

s ðMS; 2 GeVÞ ¼ 99.6ð4.3Þ MeV,
determined in Ref. [10].

Ensemble β V=a4 aμsea ¼ aμud aμσ aμδ Ncfg aμs MπðMeVÞ MKðMeVÞ
A30.32 1.90 323 × 64 0.0030 0.15 0.19 150 0.0145, 0.0185, 0.0225 275 577
A40.32 0.0040 100 315 588
A50.32 0.0050 150 350 595
A40.24 1.90 243 × 48 0.0040 0.15 0.19 150 0.0145,0.0185,0.0225 324 594
A60.24 0.0060 150 388 610
A80.24 0.0080 150 438 624
A100.24 0.0100 150 497 650
B25.32 1.95 323 × 64 0.0025 0.135 0.170 150 0.0141, 0.0180, 0.0219 259 553
B35.32 0.0035 150 300 562
B55.32 0.0055 150 377 587
B75.32 0.0075 80 437 608
B85.24 1.95 243 × 48 0.0085 0.135 0.170 150 0.0141, 0.0180, 0.0219 463 617
D15.48 2.10 483 × 96 0.0015 0.12 0.1385 90 0.0118, 0.0151, 0.0184 224 538
D20.48 0.0020 100 255 541
D30.48 0.0030 100 310 554

1Compared to Ref. [10], the number of independent gauge
configurations adopted for the ensemble D15.48 has been
increased to 90 to improve the statistics.
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extrapolation to the continuum limit, and at different lattice
volumes. In this work, the up- and down-quark masses
are always taken to be degenerate (mu ¼ md ¼ mud) and
equal in the sea and valence sectors (msea

ud ¼ mval
ud ¼ mud).

In the light sector, we have simulated quark masses mud ¼
μud=ZP in the range 3mphys

ud ≲mud ≲ 12mphys
ud , where mphys

ud
is the physical light-quark mass and Zm ≡ Z−1

P is the mass
renormalization constant (at maximal twist) determined in
Ref. [10]. In the strange sector, we have used three values
of the valence strange quark mass ms ¼ μs=ZP in the
range 0.7mphys

s ≲ms ≲ 1.2mphys
s , where mphys

s is the physi-
cal strange quark mass obtained in Ref. [10]. The values
of the lattice spacing are a ¼ f0.0885ð36Þ; 0.0815ð30Þ;
0.0619ð18Þg fm at β ¼ f1.90; 1.95; 2.10g, respectively, the
lattice volume goes from ≃2 to ≃3 fm and the pion masses,
extrapolated to the continuum and infinite volume limits,
range from ≃210 to ≃450 MeV (see Ref. [10] for further
details).
Quark propagators are obtained using the multiple mass

solver method [18,19], which allows us to invert the Dirac
operator for several quark masses at a relatively low
computational cost. The statistical accuracy of the meson
correlators is significantly improved by using the “one-end”
stochastic method [20], which includes spatial stochastic
sources at a single time slice chosen randomly. Statistical
errors are evaluated using the jackknife procedure.

III. RENORMALIZATION OF THE
CHROMOMAGNETIC OPERATOR

In this section, we briefly review the main results
obtained in Ref. [4] for the renormalization of the CMO,
whose specific renormalization pattern depends on the
details of the lattice regularization, i.e. on the choice of
the lattice action. A detailed analysis of the implications of
the discrete symmetries of the twisted-mass action was
carried out in Ref. [4], showing that the renormalization
of the CMO involves the mixing among 13 operators of
equal or lower dimensionality,2 including also non-gauge-
invariant operators vanishing by the equation of motion.
In the case of on-shell matrix elements the mixing

simplifies, and the renormalized parity-even CMO can
be written as [4]

ÔCM ¼ ZCM

�
OCM −

�
c13
a2

þ c2ðμ2s þ μ2dÞ þ c3μsμd

�
S

−
c12
a

ðμs þ μdÞP − c4O4

�
; ð9Þ

where OCM ≡ 16π2Qþ
g ¼ gs̄σμνGμνd, S ¼ s̄d, P ¼ is̄γ5d

and O4 ¼ □ðs̄dÞ are bare operators, valence quarks are
taken with the same value of the Wilson r parameter, i.e.
rs ¼ rd (see Ref. [4]), and μs (μd) denotes the bare strange
(light) quark mass.
Note that the quadratically divergent mixing of the CMO

with the scalar density S is common to any regularization,
whereas the mixing with the pseudoscalar density P
(softened by the proportionality to the quark masses) is
peculiar of twisted mass fermions, and it is a consequence
of the nonconservation of parity. Moreover, in Eq. (9)
the power divergent mixing coefficients c12 and c13 are
scheme and renormalization scale independent [22], while
the multiplicative RC ZCM and the coefficients ci with
i ¼ 2, 3, 4 depend on both the scheme and the renorm-
alization scale.
It is well known [23] that the determination of power

divergent coefficients, controlling the mixing with oper-
ators of lower dimension, cannot rely on perturbation
theory. The reason is that potential nonanalytic (in g2)
contributions to these coefficients, like those proportional
to powers of ð1=aÞ expð−1=ðβ0g2ÞÞ ∼ ΛQCD, do not appear
in the perturbative expansion. Therefore, while for the
present study the multiplicative renormalization factor ZCM
and the coefficients ci with i ¼ 2, 3, 4 have been evaluated
in perturbation theory at one-loop, the coefficients c12 and
c13 in Eq. (9) have been determined in a nonperturbative
way by imposing two suitable subtraction conditions [4].
The first one is that the matrix element of the CMO between
external kaon and pion at rest must vanish in the SU(3)
chiral limit, namely

1

ZCM
lim

ms;md→0
hπjÔCMjKi ¼ lim

ms;md→0
hπjOCM −

c13
a2

SjKi ¼ 0;

ð10Þ

from which the coefficient c13 can be determined. The
second requirement is the vanishing of the parity violating
matrix elements of the CMO up to terms of OðaÞ,
specifically

1

ZCM
h0jÔCMjKi ¼ h0jOCM−

c13
a2

S−
c12
a

ðμsþμdÞPjKi ¼ 0;

ð11Þ

from which the coefficient c12 can be calculated once the
coefficient c13 is determined from Eq. (10).
In Table II, we present the numerical results for the

various mixing coefficients, obtained in Ref. [4] at the three
values of the inverse coupling β given in Table I. The
central values and the errors of the coefficient c13 shown in
the last column correspond to the averages and the spread
of the two nonperturbative determinations corresponding
to the choice “LP” given in Table IV of Ref. [4]. For the

2The operator mixing pattern considered in Ref. [4] includes
one operator (O6), which is not independent from the other ones,
and misses one five-dimensional operator [21], which mixes with
the CMO only at two loops in perturbation theory. The results
presented in this work are therefore not affected.
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mixing coefficient c12 the uncertainty of the nonperturba-
tive results has been found at the level of ≃60% [4], and
therefore the g2-dependence of the nonperturbative deter-
mination of c12, shown in the penultimate column, can be
safely neglected.
It can be seen that (i) the power divergent coefficient c13

has been determined nonperturbatively with a very high level
of precision, (ii) the coefficients c3 and c4 vanish at one loop,
(iii) the coefficient c2 which starts at Oðg2Þ is rather small,
and (iv) the multiplicative renormalization factor ZCM
receives at one loop a sizable correction (∼70%).
In Table II, we also provide the one-loop results for the

power divergent coefficients c12 and c13. For the latter, the
difference between the one-loop and the nonperturbative
results is less than 10%. The bulk of the difference is
compatible with being a correction ofOðg4Þ. Thus, genuine
nonperturbative contributions to c13 are likely to be small,
even though a firmer conclusion in this sense would require
the calculation of c13 at two loops at least.
As far as the coefficient c12 is concerned, its size is

smaller by (at least) one order of magnitude with respect to
c13 both perturbatively and nonperturbatively (see Table II).
In addition, the corresponding operator is proportional to
the first power of the quark masses, with aðms þmdÞ ∼
0.02 in our simulations. For these reasons, the subtraction
of the linear divergence in Eq. (9) has a numerically
negligible impact on the determination of the CMO matrix
elements (see next section).

IV. LATTICE QCD CORRELATORS

In order to evaluate the matrix elements of the renor-
malized CMO (9), using the values of the mixing coef-
ficients given in Table II, we need to determine the matrix
elements of three bare local operators: OCM, OS ≡ S and
OP ≡ P. For the scalar and pseudoscalar densities we adopt
the local versions S ¼ s̄d and P ¼ is̄γ5d, respectively,
while in the lattice version of the chromomagnetic operator
OCM the gluon tensor Gμν is replaced by its clover
discretization Pμν, namely, [24]

OCM ¼ g0ψ̄ sσμνPμνψd; ð12Þ

where

PμνðxÞ≡ 1

4a2
X4
j¼1

1

2ig0
½PjðxÞ − P†

jðxÞ�; ð13Þ

and the sum is over the four plaquettes PjðxÞ in the μ − ν
plane stemming from x and taken in the counterclock-
wise sense.
The K → π matrix elements of the bare local operators

Oi (i ¼ fCM; S; Pg) are extracted from the large
(Euclidean) time distance behavior of a convenient combi-
nation of two- and three-point correlation functions, which
for both initial and final mesons at rest are defined as

CπðKÞðtÞ ¼ 1

L3

X
x⃗;z⃗

hPπðKÞðx⃗; tþ tzÞP†
πðKÞðz⃗; tzÞi; ð14Þ

CKπðπKÞ
i ðt; t0Þ ¼ 1

L6

X
x⃗;y⃗;z⃗

hPπðKÞðx⃗; t0 þ tzÞ

×Oiðy⃗; tþ tzÞP†
KðπÞðz⃗; tzÞi; ð15Þ

where t0 is the time distance between the source and the
sink, t is the time distance between the insertion of the
operator Oi and the source, while PKðxÞ ¼ is̄ðxÞγ5uðxÞ
and PπðxÞ ¼ id̄ðxÞγ5uðxÞ are the local interpolating fields
of the K and π mesons, respectively. The Wilson param-
eters r of the two valence quarks in both initial and final
mesons are always chosen to have opposite values, i.e.,
rs ¼ rd ¼ −ru, so that the squared meson masses differ
from their continuum counterpart only by terms of order
Oða2mΛQCDÞ [15].
The statistical accuracy of the correlators (14)–(15) is

significantly improved by using the all-to-all quark propa-
gators evaluated with the so-called “one-end” stochastic
method [20], which includes spatial stochastic sources at a
single time slice chosen randomly. Statistical errors are
evaluated using the jackknife procedure.
At large time distances two- and three-point correlation

functions behave as

TABLE II. Values of the multiplicative renormalization factor ZCM, in the MS scheme at the scale μ ¼ 2 GeV, and
of the mixing coefficients ci in Eq. (9), obtained in Ref. [4]. The results correspond to the three values of the inverse
coupling β given in Table I using one-loop perturbation theory, except for c12 and c13 in the last two columns, which
have been obtained nonperturbatively (see text). The perturbative results have been evaluated using the bare
coupling g20 ¼ 6=β for the power divergent coefficients c12 and c13 and the boosted coupling g2P ¼ g20=UP for the
other coefficients, where UP is the average plaquette equal to f0.575; 0.585; 0.614g at β ¼ f1.90; 1.95; 2.10g.
β ZCM c2 c3 c4 c12 c13 c12 c13

One-loop perturbation theory Nonperturbative

1.90 1.781 0.150 0.0 0.0 0.0854 0.962 0.035 (20) 0.89713 (11)
1.95 1.752 0.100 0.0 0.0 0.0832 0.937 0.035 (20) 0.87629 (13)
2.10 1.677 −0.042 0.0 0.0 0.0772 0.870 0.035 (20) 0.81676 (8)
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CπðKÞðtÞ!
t≫a

jZπðKÞj2
2MπðKÞ

½e−MπðKÞt þ e−MπðKÞÞðT−tÞ�; ð16Þ

CKπðπKÞ
i ðt; t0Þ⟶

t≫a;ðt0−tÞ≫a

ZπðKÞZ�
KðπÞ

4MπMK
hKðπÞjOijπðKÞi

× e−MKðπÞte−MπðKÞðt0−tÞ; ð17Þ

where ZπðKÞ is the matrix element h0jPπðKÞð0ÞjπðKÞi and
MπðKÞ is the mass of the πðKÞ meson. Both quantities are
determined adopting the fitting function (16) in the time
interval ½tmin; T=2�, where tmin is the time distance at which
the ground-state starts to dominate the two-point correlator.
Explicitly we choose tmin=a ¼ f10; 12; 18g at T=a ¼
f48; 64; 96g (cf. Table I) for both pion and kaon mesons.
The matrix elements hKjOijπi can be extracted from the

time behavior of the following ratios,

Riðt; t0Þ ¼ siðt; t0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MπMK

����CKπ
i ðt; t0ÞCπK

i ðt; t0Þ
C̃πðt0ÞC̃Kðt0Þ

����
s

; ð18Þ

where siðt; t0Þ is the sign of correlator CKπ
i ðt; t0Þ and the

correlation function C̃πðKÞðtÞ is given by

C̃πðKÞðtÞ≡ 1

2

�
CπðKÞðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½CπðKÞðtÞ�2 − ½CπðKÞðT=2Þ�2

q 	
;

ð19Þ

which at large time distances behave as

C̃πðKÞðtÞ→
t≫a

ZπðKÞ
2MπðKÞ

e−MπðKÞt; ð20Þ

i.e. without the backward signal. At large time distances,
one has

Riðt; t0Þ⟶
t≫a;ðt0−tÞ≫a

hKjOijπi; ð21Þ

so that the bare matrix elements hKjOijπi can be calculated
from the plateau of Ri independently of the matrix elements
Zπ and ZK of the interpolating fields. In order to minimize
excited state effects, in what follows the source-sink
separation is fixed to t0 ¼ T=2. Therefore, the region of
time distances, where both the initial and final ground states
dominate leading to the plateau (21), corresponds to
½tmin; T=2 − tmin�. Such a time interval will be adopted to
extract the CMO matrix elements.
The size of the various terms involved in the renorm-

alization of the CMO (see Eq. (22) below) and expressed
in lattice units, namely a3RCMðt; T=2Þ, c13aRSðt; T=2Þ,
c12aðμs þ μdÞaRPðt; T=2Þ and c2a2ðμ2s þ μ2dÞaRSðt; T=2Þ,
can be inferred from Fig. 2, where the results refer to β ¼
2.10 and quark masses aμd ¼ 0.0020 and aμs ¼ 0.0151

(corresponding to Mπ ≃ 255 MeV and MK ≃ 520 MeV).
The values adopted for the mixing coefficients c12 and c13
are the nonperturbative ones, while the value of the
coupling entering c2 is taken from boosted perturbation
theory (see Table II). It can be seen that the ratio
a3RCMðt; T=2Þ and the one corresponding to the leading
power divergence, c13aRSðt; T=2Þ, are almost equal, and
the subtraction is at the level of 99.7%. The other two
terms, i.e., c12aðμs þ μdÞaRPðt; T=2Þ and c2a2ðμ2s þ μ2dÞ
aRSðt; T=2Þ, are smaller by almost 5 orders of
magnitude. The operators μsμdS and O4 ¼ □ðs̄dÞ do not

FIG. 2. Time dependence of the various terms contributing
to Eq. (22) in lattice units. Upper figure: a3RCMðt; T=2Þ and
c13aRSðt; T=2Þ. Middle figure: c12aðμs þ μdÞaRPðt; T=2Þ and
c2a2ðμ2s þ μ2dÞaRSðt; T=2Þ. Bottom figure: the renormalized ratio
a3R̂CMðt; T=2Þ. The results refer to β ¼ 2.10 and quark masses
aμd ¼ aμud ¼ 0.0020 and aμs ¼ 0.0151, corresponding toMπ ≃
255 andMK ≃ 520 MeV (ensemble D20.48). The values adopted
for the mixing coefficients c12 and c13 are the nonperturbative
ones (see the last two columns of Table II), while the value of the
coupling entering c2 is taken from boosted perturbation theory
(see the third column of Table II). In the middle figure, the error
of the term c12aðμs þ μdÞaRPðt; T=2Þ is dominated by the large
uncertainty of the nonperturbative determination of c12 (see the
penultimate column of Table II). For the ensemble D20.48 the
time interval, where the plateau (21) is expected to occur, is
½tmin; T=2 − tmin�=a ¼ ½18; 30� (see text) and it is indicated by the
vertical dotted lines.
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contribute at one loop, since their mixing coefficients
vanish (see Table II).
In the lower panel of Fig. 2 we show the renormalized

CM ratio R̂CMðt; T=2Þ, given by

R̂CMðt; T=2Þ ¼ ZCM

�
RCMðt; T=2Þ −

c13
a2

RSðt; T=2Þ

−
c12
a

ðμs þ μdÞRPðt; T=2Þ

− c2ðμ2s þ μ2dÞRSðt; T=2Þ
	
: ð22Þ

Despite being the outcome of a large numerical subtraction,
due almost totally to the power divergent term ðc13=a2ÞRS,
the results for R̂CMðt; T=2Þ are clearly different from zero
and exhibit plateaux, from which the renormalized CMO
matrix element hKjÔCMjπi can be determined quite pre-
cisely (see next section). In this respect, we stress that the
high level of precision achieved in the nonperturbative
determination of c13 (see the last column of Table II) plays
a crucial role.
Notice that the renormalized CMO ratio a3R̂CMðt; T=2Þ

is 2 orders of magnitude larger than the mixing term
c2a2ðμ2s þ μ2dÞaRSðt; T=2Þ. Since c2 [as well as c3 and c4 in
Eq. (9)] is known only at one loop in perturbation theory,
higher-order corrections and nonperturbative effects might
contribute to the renormalized CMO ratio away from the
SU(3) chiral limit. However, the smallness of the mixing
term c2a2ðμ2s þ μ2dÞaRSðt; T=2Þ indicates that higher orders
and nonperturbative effects are not expected to play a
significant role in the determination of the matrix elements
of the renormalized CMO within the present statistical
uncertainties.

V. MATRIX ELEMENTS OF THE
CHROMOMAGNETIC OPERATOR

By having defined the properly renormalized CMO,
the matrix elements hKjÔCMjπi can be extracted from the
plateaux of the ratio R̂CMðt; T=2Þ in the expected time
interval ½tmin; T=2 − tmin�, where tmin is the time distance at
which excited states have decayed sufficiently from both
the source and the sink, namely tmin ¼ f10; 12; 18g at
β ¼ f1.90; 1.95; 2.10g. As described in Ref. [15], the
resulting matrix element hKjÔCMjπi is automatically
OðaÞ improved.
The B parameter BKπ

CMO, defined in Eq. (4), is easily
obtained as

BKπ
CMO ¼ 32π2

11

ms þmd

M2
K

hKjÔCMjπi
MKMπ

: ð23Þ

Note that the evaluation of the B parameter (23) does not
require the knowledge of the lattice spacing, while it

involves the mass RC Zm, which in our maximally
twisted-mass setup is given by Zm ¼ 1=ZP, where ZP is
the RC of the pseudoscalar density. For the latter, we adopt
the RI’-MOM results obtained in Ref. [10] using the two
methods M1 and M2, which differ by Oða2Þ effects.
Besides BKπ

CMO, we have calculated two further B param-
eters. They correspond to the transitions induced by the
CMO in which either the mass ms of the strange valence
quark is taken to be equal to the light-quark mass md or the
mass md of the light valence quark is taken to be equal to
the strange quark mass ms. In both cases, the spectator
valence quark, which does not participate in the transition,
is always a up-quark with mass mud [see Eqs. (14) and
(15)]. We will refer to the above two transitions as the ππ
and KK channels, respectively. Explicitly, one has

Bππ
CMO ¼ 32π2

11

2md

M2
π

hπjÔCMjπi
M2

π
; ð24Þ

BKK
CMO ¼ 32π2

11

ms þmd

M2
K

hKjÔCMjKi
M2

K
; ð25Þ

where hπjÔCMjπi≡ ½hKjÔCMjπi�ms¼md¼mud
and

hKjÔCMjKi≡ ½hKjÔCMjπi�md¼ms
. The ππ and KK chan-

nels do not correspond to any physical process, but the
set of the three quantities Bππ

CMO, B
Kπ
CMO and BKK

CMO can be
analyzed in terms of SU(3) ChPT3

In Fig. 3, we show the results for the B parameters Bππ
CMO,

BKπ
CMO, and BKK

CMO as a function of the renormalized
light-quark mass mud for the ETMC ensembles of
Table I in the M̄Sð2 GeVÞ scheme. Since we have simu-
lated three values of the strange quark mass around its
physical value (see Table I), the results for BKπ

CMO and BKK
CMO,

shown in Fig. 3, correspond to a smooth interpolation at
ms ¼ mphys

s ¼ 99.6ð4.3Þ MeV, determined in Ref. [10]. It
can be seen that, for all the three channels, the results for the
B parameters exhibit controllable discretization effects,
which are the beneficial consequence of the subtraction
of the power-divergent mixings (thanks to the use of
maximally twisted Wilson quarks the subtracted CMO
matrix elements vanish in the chiral limit even at finite
lattice spacing). Moreover, the impact of finite volume
effects can be estimated by comparing the results corre-
sponding to the ensembles A40.24 and A40.32, which
share common values of the pion mass and the lattice
spacing, and differ only by lattice size L. No significant
effects are visible within the statistical errors.
As described in Sec. I, the ChPT prediction at LO is that

all three B parameters should coincide and be independent

3In Eq. (25), the B parameter BKK
CMO is defined in such a way as

to guarantee that at LO in SU(3) ChPT the three B parameters
Bππ
CMO, B

Kπ
CMO, and B

KK
CMO are always normalized by the same quark

condensate in the chiral limit.
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of the light-quark mass. The latter feature is approximately
fulfilled only in the case of π → π channel (see upper panel
in Fig. 3). Chiral corrections beyond the LO are clearly
visible for both the Kπ and KK channels (see middle and
bottom panels in Fig. 3), since they exhibit a remarkable
dependence on the light-quark mass and deviate strongly
from the results corresponding to the ππ channel.
In order to extrapolate to the physical pion mass, we need

to take into account at least NLO effects, which however
are not known analytically. We observe, in this respect, that
the chiral corrections for the CMO matrix element contain
also powers of pK · pπ . This means that for the B parameter
BKπ
CMO, NLO terms proportional not only toM2

K andM2
π but

also toMKMπ should be considered. Note that the quantity
MKMπ ∝ m1=2

ud is nonanalytic in the light-quark mass. In
the ππ and KK channels, such a nonanalytic term is not
expected.

Thus, we introduce the variables

ξπ ≡ 2B0mud

ð4πf0Þ2
;

ξK ≡ B0ðms þmudÞ
ð4πf0Þ2

; ð26Þ

where B0 and f0 are LO low-energy constants (LECs) of
the SU(3) ChPT [25], and we consider for the generic
channel i → j with iðjÞ ¼ K, π the following SU(3)-
inspired ansatz

Bij
CMO ¼ BCMO

h
1þ α1ξπ þ β1ðξi þ ξjÞ

þ γ1

 ffiffiffiffi

ξi
p

−
ffiffiffiffi
ξj

q �
2 þ α2ξ

2
π þ β2ðξi þ ξjÞ2

þ β02ðξi − ξjÞ2 þ γ2

 ffiffiffiffi

ξi
p

−
ffiffiffiffi
ξj

q �
4
i

þ a2½D0 þD1ðξi þ ξjÞ�; ð27Þ

where BCMO is the LO LEC appearing in Eq. (7) (i.e., the
SU(3) chiral limit of the B parameters), while the param-
eters α1, β1, and γ1 play the role of NLO LECs, and α2, β2,
β02, and γ2 are NNLO LECs. In Eq. (27), the two terms
proportional to ξπ and ξ2π are due to the dependence on the
mass of the u quark (not involved in the transition) in
common for all the channels. Note that the NNLO term
proportional to ð ffiffiffiffi

ξi
p

−
ffiffiffiffi
ξj

p Þ4 generates in the Kπ channel

nonanalytic terms proportional to m1=2
ud and m3=2

ud .
According to SU(3) ChPT, the LECs are independent

of the light and strange quark masses, and therefore the
ansatz (27) can be applied to the combined analysis of the
ππ, Kπ, and KK channels. Taking into account that we
have simulated three different values of the strange quark
mass, the total number of lattice data is 105 (15 points for
the ππ channel and 45 points for bothKπ andKK channels)
and the number of fitting parameters is 10, whose values
have been determined using a χ2-minimization procedure
based on an uncorrelated χ2. The results of the SU(3)-
inspired fit (27) are shown in Fig. 3, where it can be seen
that the quality of the fit, corresponding to χ2=d:o:f: ≃ 0.5,
is remarkably good.4

After chiral and continuum extrapolations we get at
the physical point: Bππ

CMOjphys ¼ 0.078ð12Þ, BKπ
CMOjphys ¼

0.279ð10Þ and BKK
CMOjphys ¼ 0.105ð11Þ, where the errors

are statistical only. The value of the LO LEC BCMO, i.e. the
SU(3) chiral limit of the B parameters, is close to the

FIG. 3. Values of the B parameters Bππ
CMO (upper), BKπ

CMO
(middle), and BKK

CMO (bottom), defined in Eqs. (24), (23), and
(25), respectively, as a function of the renormalized light-quark
mass mud in the MSð2 GeVÞ scheme. The lattice data for BKπ

CMO
and BKK

CMO have been smoothly interpolated to the physical value
of the strange quark mass mphys

s ¼ 99.6ð4.3Þ MeV [10]. Note the
different scales in the three panels. The dashed, short-dashed and
dotted lines correspond to the results of the SU(3)-inspired fit
(27) for the three values of the lattice spacing, while the solid
lines are the result in the continuum limit. The diamonds
represent the values of the B parameters at the physical pion
mass and in the continuum limit.

4In Eq. (27) an additional NNLO term proportional to ðξi þ ξjÞ
ð ffiffiffiffi

ξi
p

−
ffiffiffiffi
ξj

p Þ2 can be considered. We have checked that the
impact of its inclusion is almost negligible. Moreover, the
inclusion of additional discretization terms proportional either
to a2ξπ or to a2ð ffiffiffiffi

ξi
p

−
ffiffiffiffi
ξj

p Þ2 produces no significant effect
within the errors.
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physical result for the ππ channel, namely
BCMO ¼ 0.076ð14Þ. Our results imply that in the Kπ
channel the impact of chiral orders higher than the LO
corresponds to a strong enhancement factor equal to ≈4.
Therefore, since higher orders in ChPT contribute differ-
ently in K → π, K → ππ and K → πππ transitions, the
corresponding B parameters are no more simply related to
each other beyond the LO.
The exclusion of all the NNLO terms in Eq. (27) (i.e.,

putting α2 ¼ β2 ¼ β02 ¼ γ2 ¼ 0) leads to a lower quality fit
having χ2=d:o:f: ≃ 1.5. This is not surprising, since for a
physical strange quark the impact of NNLO terms is
expected to be non-negligible.
The result for BKπ

CMOjphys is sensitive to the presence of the
structures proportional to ð ffiffiffiffi

ξi
p

−
ffiffiffiffi
ξj

p Þ2 and ð ffiffiffiffi
ξi

p
−

ffiffiffiffi
ξj

p Þ4.
Putting γ2 ¼ 0 in Eq. (27) we obtain BKπ

CMOjphys¼0.267ð10Þ
with χ2=d:o:f: ≃ 0.6. If all the nonanalytic terms are
neglected (i.e., γ1 ¼ γ2 ¼ 0), the quality of the correspond-
ing fit deteriorates significantly (χ2=d:o:f: ≃ 2.8).
Adopting the SU(3)-inspired fit (27) and averaging the

results of the different fits using Eq. (28) of Ref. [10], our
result for the B parameter BKπ

CMOjphys is

BKπ
CMOjphys ¼ 0.272ð10Þstatþfitð6Þchirð6Þdiscð3ÞZP

¼ 0.272ð13Þ; ð28Þ

where
(i) ðÞstatþfit indicates the uncertainty induced by both the

statistical errors and the fitting procedure itself;
(ii) ðÞchir corresponds to the uncertainty related to the

chiral extrapolation, obtained using the results cor-
responding to the inclusion (γ2 ≠ 0) or the exclusion
(γ2 ¼ 0) of the NNLO nonanalytic term in Eq. (27);

(iii) ðÞdisc is the uncertainty related to discretization
effects estimated by adding a term proportional to
a4 without any prior;

(iv) ðÞZP
is the error induced by the use of the two

methods M1 and M2 to obtain the mass RC Zm ¼
1=ZP in Ref. [10].

As a further check, we have also analyzed separately the
data for the Kπ channel (see also Ref. [11]) obtained after a
smooth interpolation at the physical value of the strange
quark mass mphys

s ¼ 99.6ð4.3Þ MeV [10]. This allows us to
adopt the following SU(2)-inspired ansatz,

BKπ
CMO ¼ αþ βmud þ γm1=2

ud þ ΔþDa2; ð29Þ

where the parameters α, β, and γ play the role of SUð2Þ
LECs, while the function Δ includes chiral corrections
beyond the NLO. Then, we have performed fits of the 15
lattice points of the Kπ channel (interpolated atms¼mphys

s )
adopting three choices for Δ, namely Δ ¼ 0, Δ ∝ m3=2

ud and
Δ ∝ m2

ud. For all the three choices we obtain a good

description of the lattice data (χ2=d:o:f: ≃ 0.4; 0.2 and
0.2, respectively). The extrapolation to the physical pion
point, in the three cases, yields BKπ

CMOjphys ¼ 0.275ð18Þ
(Δ ¼ 0), BKπ

CMOjphys ¼ 0.340ð44Þ (Δ ∝ m3=2
ud ), and

BKπ
CMOjphys ¼ 0.327ð51Þ (Δ ∝ m2

ud). The results of the
fit (29) assuming Δ ¼ 0 are shown in Fig. 4.
Adopting the SU(2)-inspired fit (29) and averaging the

results of the different fits using Eq. (28) of Ref. [10],
we obtain

BKπ
CMOjphys ¼ 0.306ð37Þstatþfitð44Þchirð16Þdiscð7ÞZP

¼ 0.306ð60Þ; ð30Þ

which is consistent with the SU(3) result (28) though with
much larger statistical and systematic uncertainties.
Thus, performing a weighted average of the SU(2) and

SU(3) results, we quote for BKπ
CMOjphys the final value

BKπ
CMOjphys ¼ 0.273ð13Þð68ÞPT ¼ 0.273ð69Þ; ð31Þ

where the second error accounts for the perturbative
uncertainty in the one-loop determination of the multipli-
cative RC ZCM (see Table II) and it has been estimated to be
≃25% relying on the difference between the values of ZCM
obtained with and without boosted perturbation theory. As
it can be seen, this error represents the largest source of
uncertainty in the determination of the BKπ

CMO parameter.
Our result (31) represents the first lattice QCD determi-

nation of a matrix element of the CMO. In the SU(3) chiral
limit we obtain BCMO ¼ 0.076ð14Þð18ÞPT ¼ 0.076ð23Þ.

FIG. 4. Values of the B parameter BKπ
CMO as a function of the

renormalized light-quark mass mud in the MSð2 GeVÞ scheme.
The lattice data have been smoothly interpolated to the physical
value of the strange quark mass mphys

s ¼ 99.6ð4.3Þ MeV [10].
The dashed, short-dashed, and dotted lines correspond to the
results of the SU(2)-inspired fit (29) assumingΔ ¼ 0 for the three
values of the lattice spacing, while the solid line is the result in the
continuum limit. The diamonds represent the values of the B
parameters at the physical pion mass and in the continuum limit.
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Our findings are significantly smaller than the model-
dependent estimate BCMO ∼ 1–4 currently adopted in phe-
nomenological analyses [1]. The comparison indicates also
that the uncertainty on this important phenomenological
quantity has been significantly reduced by lattice QCD.
A further drastic improvement in the precision can be
achieved by removing the uncertainty due to the use of one-
loop perturbation theory for estimating the multiplicative
RC ZCM, which is by far the dominating source of
uncertainty in our results.

VI. CONCLUSIONS

We have presented the results of the first lattice QCD
calculation of the K → π matrix elements of the chromo-
magnetic operatorOCM ¼ gs̄σμνGμνd, which appears in the
effective Hamiltonian describing ΔS ¼ 1 transitions in and
beyond the standard model.
Having dimension five, the chromomagnetic operator

is characterized by a rich pattern of mixing with operators
of equal and lower dimensionality. The power divergent
coefficients controlling the mixing with operators of lower
dimension were determined nonperturbatively in Ref. [4],
while the multiplicative renormalization factor as well as
the mixing coefficients with the operators of equal dimen-
sion have been computed at one-loop in perturbation
theory [4]. The precision achieved in the nonperturbative

evaluation of the mixing with the scalar density leads to an
extraction of the matrix element of the renormalized
chromomagnetic operator with good accuracy.
The numerical simulations have been carried out using

the gauge field configurations produced by ETMC with
Nf ¼ 2þ 1þ 1 dynamical quarks at three values of the
lattice spacing. Our result for the B parameter of the
chromomagnetic operator at the physical pion and kaon
point is BKπ

CMO ¼ 0.273ð69Þ, while in the SU(3) chiral limit
we get BCMO ¼ 0.076ð23Þ. Our findings are significantly
smaller than the model-dependent estimate BCMO ∼ 1–4,
currently used in phenomenological analyses, and improve
the uncertainty on this important phenomenological quantity.
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