6,177 research outputs found
Quasi-2D Confinement of a BEC in a Combined Optical and Magnetic Potential
We have added an optical potential to a conventional Time-averaged Orbiting
Potential (TOP) trap to create a highly anisotropic hybrid trap for ultracold
atoms. Axial confinement is provided by the optical potential; the maximum
frequency currently obtainable in this direction is 2.2 kHz for rubidium. The
radial confinement is independently controlled by the magnetic trap and can be
a factor of 700 times smaller than in the axial direction. This large
anisotropy is more than sufficient to confine condensates with ~10^5 atoms in a
Quasi-2D (Q2D) regime, and we have verified this by measuring a change in the
free expansion of the condensate; our results agree with a variational model.Comment: 11 pages, 10 figur
Local influence of boundary conditions on a confined supercooled colloidal liquid
We study confined colloidal suspensions as a model system which approximates
the behavior of confined small molecule glass-formers. Dense colloidal
suspensions become glassier when confined between parallel glass plates. We use
confocal microscopy to study the motion of confined colloidal particles. In
particular, we examine the influence particles stuck to the glass plates have
on nearby free particles. Confinement appears to be the primary influence
slowing free particle motion, and proximity to stuck particles causes a
secondary reduction in the mobility of free particles. Overall, particle
mobility is fairly constant across the width of the sample chamber, but a
strong asymmetry in boundary conditions results in a slight gradient of
particle mobility.Comment: For conference proceedings, "Dynamics in Confinement", Grenoble,
March 201
Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis
An asymmetric decarboxylative C_(sp)^3–C_(sp)^2 cross-coupling has been achieved via the synergistic merger of photoredox and nickel catalysis. This mild, operationally simple protocol transforms a wide variety of naturally abundant α-amino acids and readily available aryl halides into valuable chiral benzylic amines in high enantiomeric excess, thereby producing motifs found in pharmacologically active agents
The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution
We present multi-wavelength observations of the tidal disruption event (TDE)
iPTF15af, discovered by the intermediate Palomar Transient Factory (iPTF)
survey at redshift . The optical and ultraviolet (UV) light curves
of the transient show a slow decay over five months, in agreement with previous
optically discovered TDEs. It also has a comparable black-body peak luminosity
of erg/s. The inferred temperature
from the optical and UV data shows a value of (35) K. The
transient is not detected in X-rays up to erg/s within
the first five months after discovery. The optical spectra exhibit two distinct
broad emission lines in the He II region, and at later times also H
emission. Additionally, emission from [N III] and [O III] is detected, likely
produced by the Bowen fluorescence effect. UV spectra reveal broad emission and
absorption lines associated with high-ionization states of N V, C IV, Si IV,
and possibly P V. These features, analogous to those of broad absorption line
quasars (BAL QSOs), require an absorber with column densities cm. This optically thick gas would also explain the
non-detection in soft X-rays. The profile of the absorption lines with the
highest column density material at the largest velocity is opposite that of BAL
QSOs. We suggest that radiation pressure generated by the TDE flare at early
times could have provided the initial acceleration mechanism for this gas.
Spectral UV line monitoring of future TDEs could test this proposal.Comment: 20 pages, 12 figures, published in Ap
Time Dependent Monte Carlo Radiative Transfer Calculations For 3-Dimensional Supernova Spectra, Lightcurves, and Polarization
We discuss Monte-Carlo techniques for addressing the 3-dimensional
time-dependent radiative transfer problem in rapidly expanding supernova
atmospheres. The transfer code SEDONA has been developed to calculate the
lightcurves, spectra, and polarization of aspherical supernova models. From the
onset of free-expansion in the supernova ejecta, SEDONA solves the radiative
transfer problem self-consistently, including a detailed treatment of gamma-ray
transfer from radioactive decay and with a radiative equilibrium solution of
the temperature structure. Line fluorescence processes can also be treated
directly. No free parameters need be adjusted in the radiative transfer
calculation, providing a direct link between multi-dimensional hydrodynamical
explosion models and observations. We describe the computational techniques
applied in SEDONA, and verify the code by comparison to existing calculations.
We find that convergence of the Monte Carlo method is rapid and stable even for
complicated multi-dimensional configurations. We also investigate the accuracy
of a few commonly applied approximations in supernova transfer, namely the
stationarity approximation and the two-level atom expansion opacity formalism.Comment: 16 pages, ApJ accepte
Nucleosynthesis in Two-Dimensional Delayed Detonation Models of Type Ia Supernova Explosions
The nucleosynthetic characteristics of various explosion mechanisms of Type
Ia supernovae (SNe Ia) is explored based on three two-dimensional explosion
simulations representing extreme cases: a pure turbulent deflagration, a
delayed detonation following an approximately spherical ignition of the initial
deflagration, and a delayed detonation arising from a highly asymmetric
deflagration ignition. Apart from this initial condition, the deflagration
stage is treated in a parameter-free approach. The detonation is initiated when
the turbulent burning enters the distributed burning regime. This occurs at
densities around g cm -- relatively low as compared to existing
nucleosynthesis studies for one-dimensional spherically symmetric models. The
burning in these multidimensional models is different from that in
one-dimensional simulations as the detonation wave propagates both into
unburned material in the high density region near the center of a white dwarf
and into the low density region near the surface. Thus, the resulting yield is
a mixture of different explosive burning products, from carbon-burning products
at low densities to complete silicon-burning products at the highest densities,
as well as electron-capture products synthesized at the deflagration stage. In
contrast to the deflagration model, the delayed detonations produce a
characteristic layered structure and the yields largely satisfy constraints
from Galactic chemical evolution. In the asymmetric delayed detonation model,
the region filled with electron capture species (e.g., Ni, Fe) is
within a shell, showing a large off-set, above the bulk of Ni
distribution, while species produced by the detonation are distributed more
spherically (abridged).Comment: Accepted by the Astrophysical Journal. 15 pages, 14 figures, 4 table
Analysis of the Flux and Polarization Spectra of the Type Ia Supernova SN 2001el: Exploring the Geometry of the High-velocity Ejecta
SN 2001el is the first normal Type Ia supernova to show a strong, intrinsic
polarization signal. In addition, during the epochs prior to maximum light, the
CaII IR triplet absorption is seen distinctly and separately at both normal
photospheric velocities and at very high velocities. The high-velocity triplet
absorption is highly polarized, with a different polarization angle than the
rest of the spectrum. The unique observation allows us to construct a
relatively detailed picture of the layered geometrical structure of the
supernova ejecta: in our interpretation, the ejecta layers near the photosphere
(v \approx 10,000 km/s) obey a near axial symmetry, while a detached,
high-velocity structure (v \approx 18,000-25,000 km/s) with high CaII line
opacity deviates from the photospheric axisymmetry. By partially obscuring the
underlying photosphere, the high-velocity structure causes a more incomplete
cancellation of the polarization of the photospheric light, and so gives rise
to the polarization peak and rotated polarization angle of the high-velocity IR
triplet feature. In an effort to constrain the ejecta geometry, we develop a
technique for calculating 3-D synthetic polarization spectra and use it to
generate polarization profiles for several parameterized configurations. In
particular, we examine the case where the inner ejecta layers are ellipsoidal
and the outer, high-velocity structure is one of four possibilities: a
spherical shell, an ellipsoidal shell, a clumped shell, or a toroid. The
synthetic spectra rule out the spherical shell model, disfavor a toroid, and
find a best fit with the clumped shell. We show further that different
geometries can be more clearly discriminated if observations are obtained from
several different lines of sight.Comment: 14 pages (emulateapj5) plus 18 figures, accepted by The Astrophysical
Journa
Constraining Type Ia supernova models: SN 2011fe as a test case
The nearby supernova SN 2011fe can be observed in unprecedented detail.
Therefore, it is an important test case for Type Ia supernova (SN Ia) models,
which may bring us closer to understanding the physical nature of these
objects. Here, we explore how available and expected future observations of SN
2011fe can be used to constrain SN Ia explosion scenarios. We base our
discussion on three-dimensional simulations of a delayed detonation in a
Chandrasekhar-mass white dwarf and of a violent merger of two white
dwarfs-realizations of explosion models appropriate for two of the most
widely-discussed progenitor channels that may give rise to SNe Ia. Although
both models have their shortcomings in reproducing details of the early and
near-maximum spectra of SN 2011fe obtained by the Nearby Supernova Factory
(SNfactory), the overall match with the observations is reasonable. The level
of agreement is slightly better for the merger, in particular around maximum,
but a clear preference for one model over the other is still not justified.
Observations at late epochs, however, hold promise for discriminating the
explosion scenarios in a straightforward way, as a nucleosynthesis effect leads
to differences in the 55Co production. SN 2011fe is close enough to be followed
sufficiently long to study this effect.Comment: Accepted for publication in The Astrophysical Journal Letter
The Earliest Near-infrared Time-series Spectroscopy of a Type Ia Supernova
We present ten medium-resolution, high signal-to-noise ratio near-infrared
(NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility
(IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained
as part of the Carnegie Supernova Project. This data set constitutes the
earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the
first spectrum obtained at 2.58 days past the explosion and covering -14.6 to
+17.3 days relative to B-band maximum. C I {\lambda}1.0693 {\mu}m is detected
in SN 2011fe with increasing strength up to maximum light. The delay in the
onset of the NIR C I line demonstrates its potential to be an effective tracer
of unprocessed material. For the first time in a SN Ia, the early rapid decline
of the Mg II {\lambda}1.0927 {\mu}m velocity was observed, and the subsequent
velocity is remarkably constant. The Mg II velocity during this constant phase
locates the inner edge of carbon burning and probes the conditions under which
the transition from deflagration to detonation occurs. We show that the Mg II
velocity does not correlate with the optical light-curve decline rate
{\Delta}m15. The prominent break at ~1.5 {\mu}m is the main source of concern
for NIR k-correction calculations. We demonstrate here that the feature has a
uniform time evolution among SNe Ia, with the flux ratio across the break
strongly correlated with {\Delta}m15. The predictability of the strength and
the onset of this feature suggests that the associated k-correction
uncertainties can be minimized with improved spectral templates.Comment: 14 pages, 13 figures, accepted for publication in Ap
- …
