We study confined colloidal suspensions as a model system which approximates
the behavior of confined small molecule glass-formers. Dense colloidal
suspensions become glassier when confined between parallel glass plates. We use
confocal microscopy to study the motion of confined colloidal particles. In
particular, we examine the influence particles stuck to the glass plates have
on nearby free particles. Confinement appears to be the primary influence
slowing free particle motion, and proximity to stuck particles causes a
secondary reduction in the mobility of free particles. Overall, particle
mobility is fairly constant across the width of the sample chamber, but a
strong asymmetry in boundary conditions results in a slight gradient of
particle mobility.Comment: For conference proceedings, "Dynamics in Confinement", Grenoble,
March 201