9,416 research outputs found

    Understanding the central kinematics of globular clusters with simulated integrated-light IFU observations

    Get PDF
    The detection of intermediate mass black holes in the centres of globular clusters is highly controversial, as complementary observational methods often deliver significantly different results. In order to understand these discrepancies, we develop a procedure to simulate integral field unit (IFU) observations of globular clusters: Simulating IFU Star Cluster Observations (SISCO). The input of our software are realistic dynamical models of globular clusters that are then converted in a spectral data cube. We apply SISCO to Monte Carlo cluster simulations from Downing et al. (2010), with a realistic number of stars and concentrations. Using independent realisations of a given simulation we are able to quantify the stochasticity intrinsic to the problem of observing a partially resolved stellar population with integrated-light spectroscopy. We show that the luminosity-weighted IFU observations can be strongly biased by the presence of a few bright stars that introduce a scatter in the velocity dispersion measurements up to ≃\simeq40% around the expected value, preventing any sound assessment of the central kinematic and a sensible interpretation of the presence/absence of an intermediate mass black hole. Moreover, we illustrate that, in our mock IFU observations, the average kinematic tracer has a mass of ≃\simeq0.75 solar masses, only slightly lower than the mass of the typical stars examined in studies of resolved line-of-sight velocities of giant stars. Finally, in order to recover unbiased kinematic measurements we test different masking techniques that allow us to remove the spaxels dominated by bright stars, bringing the scatter down to a level of only a few percent. The application of SISCO will allow to investigate state-of-the-art simulations as realistic observations.Comment: 13 pages, 9 figures, 1 table. Accepted for publication in MNRA

    Being WISE I: Validating Stellar Population Models and M/L ratios at 3.4 and 4.6 microns

    Get PDF
    Using data from the WISE mission, we have measured near infra-red (NIR) photometry of a diverse sample of dust-free stellar systems (globular clusters, dwarf and giant early-type galaxies) which have metallicities that span the range -2.2 < [Fe/H] (dex) < 0.3. This dramatically increases the sample size and broadens the metallicity regime over which the 3.4 (W1) and 4.6 micron (W2) photometry of stellar populations have been examined. We find that the W1 - W2 colors of intermediate and old (> 2 Gyr) stellar populations are insensitive to the age of the stellar population, but that the W1 - W2 colors become bluer with increasing metallicity, a trend not well reproduced by most stellar population synthesis (SPS) models. In common with previous studies, we attribute this behavior to the increasing strength of the CO absorption feature located in the 4.6 micron bandpass with metallicity. Having used our sample to validate the efficacy of some of the SPS models, we use these models to derive stellar mass-to-light ratios in the W1 and W2 bands. Utilizing observational data from the SAURON and ATLAS3D surveys, we demonstrate that these bands provide extremely simple, yet robust stellar mass tracers for dust free older stellar populations that are freed from many of the uncertainties common among optical estimators.Comment: 11 pages, 6 figures, submitted to Ap

    The star catalogues of Ptolemaios and Ulugh Beg: Machine-readable versions and comparison with the modern Hipparcos Catalogue

    Get PDF
    In late antiquity and throughout the middle ages, the positions of stars on the celestial sphere were obtained from the star catalogue of Ptolemaios. A catalogue based on new measurements appeared in 1437, with positions by Ulugh Beg, and magnitudes from the 10th-century astronomer al-Sufi. We provide machine-readable versions of these two star catalogues, based on the editions by Toomer (1998) and Knobel (1917), and determine their accuracies by comparison with the modern Hipparcos Catalogue. The magnitudes in the catalogues correlate well with modern visual magnitudes; the indication `faint' by Ptolemaios is found to correspond to his magnitudes 5 and 6. Gaussian fits to the error distributions in longitude / latitude give widths sigma ~ 27 arcmin / 23 arcmin in the range |Delta lambda, Delta beta|<50 arcmin for Ptolemaios and sigma ~ 22 arcmin /18 arcmin in Ulugh Beg. Fits to the range |Delta lambda, Delta beta|<100 arcmin gives 10-15 per cent larger widths, showing that the error distributions are broader than gaussians. The fraction of stars with positions wrong by more than 150 arcmin is about 2 per cent for Ptolemaios and 0.1 per cent in Ulugh Beg; the numbers of unidentified stars are 1 in Ptolemaios and 3 in Ulugh Beg. These numbers testify to the excellent quality of both star catalogues (as edited by Toomer and Knobel).Comment: to be published in Astronomy and Astrophysics; 34 pages with 57 Figures. Note changed address and email address of first autho

    Configuring the caller in ambiguous encounters: volunteer handling of calls to Samaritans emotional support services

    Get PDF
    This paper discusses volunteer strategies for handling and assessing calls to Samaritans emotional support services for the suicidal and despairing. It presents findings from the qualitative components of a two year mixed methods study based on an online caller survey, branch observations and interviews with volunteers and callers throughout the UK. A thematic analysis of the qualitative data analysis was undertaken using the principle of constant comparison. Many calls fell beyond the primary remit of a crisis service, and called for rapid attribution and assessment. Uncertainty about identifying ‘good’ calls and recognizing those which were not caused difficulty, frustration and negative attribution towards some callers. This paper presents our analysis of volunteers’ accounts of how they configure the caller in intrinsically uncertain and ambiguous encounters, and how such strategies relate to the formal principles of unconditional support and non-judgemental active listening espoused by the organization

    Radial distribution of the multiple stellar populations in omega Centauri

    Full text link
    We present a detailed study of the radial distribution of the multiple populations identified in the Galactic globular cluster omega Cen. We used both space-based images (ACS/WFC and WFPC2) and ground-based images (FORS1@VLT and [email protected] ESO telescopes) to map the cluster from the inner core to the outskirts (~20 arcmin). These data sets have been used to extract high-accuracy photometry for the construction of color-magnitude diagrams and astrometric positions of ~900 000 stars. We find that in the inner ~2 core radii the blue main sequence (bMS) stars slightly dominate the red main sequence (rMS) in number. At greater distances from the cluster center, the relative numbers of bMS stars with respect to rMS drop steeply, out to ~8 arcmin, and then remain constant out to the limit of our observations. We also find that the dispersion of the Gaussian that best fits the color distribution within the bMS is significantly greater than the dispersion of the Gaussian that best fits the color distribution within the rMS. In addition, the relative number of intermediate-metallicity red-giant-branch stars which includes the progeny of the bMS) with respect to the metal-poor component (the progeny of the rMS) follows a trend similar to that of the main-sequence star-count ratio N_bMS/N_rMS. The most metal-rich component of the red-giant branch follows the same distribution as the intermediate-metallicity component. We briefly discuss the possible implications of the observed radial distribution of the different stellar components in omega Cen.Comment: 16 pages, 14 figures (6 in low resolution), 3 tables. Accepted for publication in Astronomy and Astrophysics on 23 September 200

    Fully broadband vAPP coronagraphs enabling polarimetric high contrast imaging

    Full text link
    We present designs for fully achromatic vector Apodizing Phase Plate (vAPP) coronagraphs, that implement low polarization leakage solutions and achromatic beam-splitting, enabling observations in broadband filters. The vAPP is a pupil plane optic, inducing the phase through the inherently achromatic geometric phase. We discuss various implementations of the broadband vAPP and set requirements on all the components of the broadband vAPP coronagraph to ensure that the leakage terms do not limit a raw contrast of 1E-5. Furthermore, we discuss superachromatic QWPs based of liquid crystals or quartz/MgF2 combinations, and several polarizer choices. As the implementation of the (broadband) vAPP coronagraph is fully based on polarization techniques, it can easily be extended to furnish polarimetry by adding another QWP before the coronagraph optic, which further enhances the contrast between the star and a polarized companion in reflected light. We outline several polarimetric vAPP system designs that could be easily implemented in existing instruments, e.g. SPHERE and SCExAO.Comment: 11 pages, 5 figures, presented at SPIE Astronomical Telescopes and Instrumentation 201
    • 

    corecore