73 research outputs found

    A cornucopia of delights for the mouse fancier

    Get PDF
    A report on the Mouse Molecular Genetics meeting, Hinxton, UK, 5-9 September 2007

    Infrared-Faint Radio Sources: A New Population of High-redshift Radio Galaxies

    Full text link
    We present a sample of 1317 Infrared-Faint Radio Sources (IFRSs) that, for the first time, are reliably detected in the infrared, generated by cross-correlating the Wide-Field Infrared Survey Explorer (WISE) all-sky survey with major radio surveys. Our IFRSs are brighter in both radio and infrared than the first generation IFRSs that were undetected in the infrared by the Spitzer Space Telescope. We present the first spectroscopic redshifts of IFRSs, and find that all but one of the IFRSs with spectroscopy has z > 2. We also report the first X-ray counterparts of IFRSs, and present an analysis of radio spectra and polarization, and show that they include Gigahertz-Peaked Spectrum, Compact Steep Spectrum, and Ultra-Steep Spectrum sources. These results, together with their WISE infrared colours and radio morphologies, imply that our sample of IFRSs represents a population of radio-loud Active Galactic Nuclei at z > 2. We conclude that our sample consists of lower-redshift counterparts of the extreme first generation IFRSs, suggesting that the fainter IFRSs are at even higher redshift.Comment: 23 pages, 17 figures. Submitted to MNRA

    Analysis of the asymmetrically expressed Ablim1 locus reveals existence of a lateral plate Nodal-independent left sided signal and an early, left-right independent role for nodal flow

    Get PDF
    BACKGROUND: Vertebrates show clear asymmetry in left-right (L-R) patterning of their organs and associated vasculature. During mammalian development a cilia driven leftwards flow of liquid leads to the left-sided expression of Nodal, which in turn activates asymmetric expression of the transcription factor Pitx2. While Pitx2 asymmetry drives many aspects of asymmetric morphogenesis, it is clear from published data that additional asymmetrically expressed loci must exist. RESULTS: A L-R expression screen identified the cytoskeletally-associated gene, actin binding lim protein 1 (Ablim1), as asymmetrically expressed in both the node and left lateral plate mesoderm (LPM). LPM expression closely mirrors that of Nodal. Significantly, Ablim1 LPM asymmetry was detected in the absence of detectable Nodal. In the node, Ablim1 was initially expressed symmetrically across the entire structure, resolving to give a peri-nodal ring at the headfold stage in a flow and Pkd2-dependent manner. The peri-nodal ring of Ablim1 expression became asymmetric by the mid-headfold stage, showing stronger right than left-sided expression. Node asymmetry became more apparent as development proceeded; expression retreated in an anticlockwise direction, disappearing first from the left anterior node. Indeed, at early somite stages Ablim1 shows a unique asymmetric expression pattern, in the left lateral plate and to the right side of the node. CONCLUSION: Left LPM Ablim1 is expressed in the absence of detectable LPM Nodal, clearly revealing existence of a Pitx2 and Nodal-independent left-sided signal in mammals. At the node, a previously unrecognised action of early nodal flow and Pkd2 activity, within the pit of the node, influences gene expression in a symmetric manner. Subsequent Ablim1 expression in the peri-nodal ring reveals a very early indication of L-R asymmetry. Ablim1 expression analysis at the node acts as an indicator of nodal flow. Together these results make Ablim1 a candidate for controlling aspects of L-R identity and patterning

    Atmin mediates kidney morphogenesis by modulating Wnt signaling

    Get PDF
    The DNA damage protein and transcription factor Atmin (Asciz) is required for both lung tubulogenesis and ciliogenesis. Like the lungs, kidneys contain a tubular network that is critical for their function and in addition, renal ciliary dysfunction has been implicated in the pathogenesis of cystic kidney disease. Using the Atmin mouse mutant Gasping6 (Gpg6), we investigated kidney development and found it severely disrupted with reduced branching morphogenesis, resulting in fewer epithelial structures being formed. Unexpectedly, transcriptional levels of key cilia associated genes were not altered in Atmin(Gpg6/Gpg6) kidneys. Instead, Gpg6 homozygous kidneys exhibited altered cytoskeletal organization and modulation of Wnt signaling pathway molecules, including β-catenin and non-canonical Wnt/planar cell polarity (PCP) pathway factors, such as Daam2 and Vangl2. Wnt signaling is important for kidney development and perturbation of Wnt signaling pathways can result in cystic, and other, renal abnormalities. In common with other PCP pathway mutants, Atmin(Gpg6/Gpg6) mice displayed a shortened rostral-caudal axis and mis-oriented cell division. Moreover, intercrosses between Atmin(Gpg6/+) and Vangl2(Lp/+) mice revealed a genetic interaction between Atmin and Vangl2. Thus we show for the first time that Atmin is critical for normal kidney development and we present evidence that mechanistically, Atmin modifies Wnt signaling pathways, specifically placing it as a novel effector molecule in the non-canonical Wnt/PCP pathway. The identification of a novel modulator of Wnt signaling has important implications for understanding the pathobiology of renal disease

    WISE J233237.05–505643.5: A Double-peaked, Broad-lined Active Galactic Nucleus with a Spiral-shaped Radio Morphology

    Get PDF
    We present radio continuum mapping, optical imaging, and spectroscopy of the newly discovered double-peaked, broad-lined active galactic nucleus (AGN) WISE J233237.05–505643.5 at redshift z = 0.3447. This source exhibits an FR-I and FR-II hybrid morphology, characterized by a bright core, jet, and Doppler-boosted lobe structures in Australian Telescope Compact Array continuum maps at 1.5, 5.6, and 9 GHz. Unlike most FR-II objects, W2332–5056 is hosted by a disk-like galaxy. The core has a projected 5'' linear radio feature that is perpendicular to the curved primary jet, hinting at unusual and complex activity within the inner 25 kpc. The multi-epoch, optical-near-IR photometric measurements indicate significant variability over a 3-20 yr baseline from the AGN component. Gemini South optical data show unusual double-peaked emission-line features: the centroids of the broad-lined components of Hα and Hβ are blueshifted with respect to the narrow lines and host galaxy by ~3800 km s^(–1). We examine possible cases that involve single or double supermassive black holes in the system and discuss the required future investigations to disentangle the mysterious nature of this system

    ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis

    Get PDF
    Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmin(gpg6/gpg6), Atmin(H210Q/H210Q) and Dynll1(GT/GT), revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1(GT/GT) embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathie

    Proceedings of the 3rd BEAT-PCD Conference and 4th PCD Training School

    Get PDF
    Abstract Primary ciliary dyskinesia (PCD) is a chronic suppurative airways disease that is usually recessively inherited and has marked clinical phenotypic heterogeneity. Classic symptoms include neonatal respiratory distress, chronic rhinitis since early childhood, chronic otitis media, recurrent airway infections leading to bronchiectasis, chronic sinusitis, laterality defects with and without congenital heart disease including abnormal situs in approximately 50% of the cases, and male infertility. Lung function deteriorates progressively from childhood throughout life. ‘Better Experimental Approaches to Treat Primary Ciliary Dyskinesia’ (BEAT-PCD) is a network of scientists and clinicians coordinating research from basic science through to clinical care with the intention of developing treatments and diagnostics that lead to improved long-term outcomes for patients. BEAT-PCD activities are supported by EU funded COST Action (BM1407). The third BEAT-PCD conference and fourth PCD training school were held jointly in February 2018 in Lisbon, Portugal. Presentations and workshops focussed on advancing the knowledge and skills relating to PCD in: basic science, epidemiology, diagnostic testing, clinical management and clinical trials. The multidisciplinary conference provided an interactive platform for exchanging ideas through a program of lectures, poster presentations, breakout sessions and workshops. Three working groups met to plan consensus statements. Progress with BEAT-PCD projects was shared and new collaborations were fostered. In this report, we summarize the meeting, highlighting developments made during the meeting

    The African Genome Variation Project shapes medical genetics in Africa.

    Get PDF
    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa
    • …
    corecore