74 research outputs found

    Development of a computational platform for the visualization of metabolic models

    Get PDF
    Dissertação de mestrado em BioinformáticaThe recent sequencing techniques and omics approaches are generating huge amounts of data that can provide ways to extract meaningful knowledge, by resorting to appropriate computational tools. One important technique resorts to the use of genome scale model reconstructions. These models are widely used in Metabolic Engineering, attempting to optimize an organism's functions, genetically modifying it to produce compounds of industrial interest. Another area that became widely important within the fields of Systems Biology and Bioinformatics was network analysis and visualization. Networks can provide a way to better understand the relationships between biological entities, by allowing their visual representation. However, biological networks usually comprise a large number of entities and interactions, that cannot be easily interpreted by the human eye. Integrating visualization and analysis is, therefore, a goal of high interest in several scientific areas, and this has been tackled by several visualization tools available. However, regarding the integration of metabolic engineering techniques with metabolic network visualization, there are still few examples of success. Usually, it is necessary to use more than one tool and the agility of the methods is limited. In this work, a metabolic network visualization framework is presented, with the goal of being a tool that will help researchers in metabolic engineering projects. This framework is divided in two layers: the first deals with the importation and exportation of networks in different formats, while the other layer provides all the visualization and edition features. A metabolic layout is based on the reactions contained in the metabolic model, and it can represent just a part of the metabolism of an organism. To have the possibility to use the same layout in different models, a strategy was defined to map the entities of the visualization with the entities of the model. The layouts are displayed in a bipartite graph, with different node types and colors. It is possible to visualize additional information of the network by clicking the nodes. Some of the features include dragging, zooming and highlighting. On top of all this, it is also possible to apply filters and overlap information over these networks. The filters can change what is visible in the network, while the overlaps allow defining new labels, colors and shapes to the nodes, and new colors and thickness to the edges. Finally, the framework was also integrated within OptFlux, an open-source software to support metabolic engineering available at www.optflux.org, to provide a connection between visualization and metabolic simulation methods.As recentes técnicas de sequenciação e as abordagens "ómicas" estão a gerar enormes quantidades de dados que, através do uso de ferramentas computacionais adequadas, podem fornecer formas de extraccão de conhecimento biológico significativo. Uma importante metodologia recorre à reconstrução de modelos metabólicos à escala genómica. Estes modelos são muito usados na Engenharia Metabólica, tentado-se optimizar o funcionamento do organismo, modificando-o geneticamente, de forma a maximizar a produção de compostos de interesse industrial. Outra área de estudo que tem ganho bastante importância nos campos da Biologia de sistemas e Bioinformática é a análise e visualização de redes. As redes podem oferecer formas de melhor compreender as relações existentes entre entidades biológicas, fornecendo uma representação visual destes relacionamentos. No entanto, as redes biológicas, usualmente, são compostas por um elevado número de entidades e relacionamentos, o que pode tornar difícil a sua interpretação a "olho nu". A integração de visualização e análise sempre foi um objectivo de interesse em todas as áreas científicas, e respostas a este problema têm surgido sob a forma de diferentes ferramentas. No entanto, no que se refere à integração de técnicas de engenharia metabólica com visualização de redes metabólicas, existem ainda poucos exemplos com sucesso. Usualmente, é necessário o uso de diversas ferramentas e as funcionalidades e flexibilidade é ainda limitada. Neste trabalho é apresentada uma plataforma para a visualização de redes metabólicas, com o objectivo de ser uma ferramenta que assista investigadores em projectos de engenharia metabólica. Esta plataforma está dividida em duas camadas: a primeira lida com a importação e exportação de redes em diferentes formatos, enquanto a outra camada oferece todas as funcionalidades de visualização e edição. Um layout metabólico é baseado nas reaccões contidas num modelo metabólico, e pode representar apenas uma parte do metabolismo do organismo. De forma a ser possível utilizar o mesmo layout em modelos diferentes, foi definida uma estratégia para mapear as entidades da visualização com as entidades do modelo. Os layouts são representados sob a forma de um grafo bi-partido, com diferentes tipos de nodos e cores. É possível visualizar informação adicional sobre a rede clicando nos nodos. Algumas das funcionalidades incluem arrastar, focar e realçar partes da rede. Para além de tudo isto, é possível aplicar filtros e sobrepor informação sobre a rede. Os filtros permitem definir o que é visível na rede, enquanto a sobreposição permite definir novas etiquetas, formas e cores dos nodos e cores e espessura das conecções. Finalmente, a plataforma foi integrada no OptFlux, uma ferramenta de código aberto para engenharia metabólica que está disponível em www.optflux.org, de forma a estabelecer uma conexão entre a visualização de redes metabólicas e métodos de simulação do metabolismo.ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness)Fundação para a Ciência e a Tecnologia (FCT) - COMPETE FCOMP-01-0124-FEDER-015079 and PEst-OE/EEI/UI0752/201

    Visualization plugin for Optflux: tools for the creation of metabolic layouts and analysis of flux distributions

    Get PDF
    The reconstruction of genome scale metabolic models is one of the major challenges of Systems Biology. These models are used to better understand the organisms’ metabolic functions and predict their behavior in the form of flux distributions. Their increasing availability and use for the integrated analysis with high-throughput data has exacerbated the need for tools to visualize large scale models/networks. This problem was addressed with graph-drawing software such as Cytoscape, which allows the visualization of arbitrary graphs. However, the output from these platforms is visually distinct from the more traditional and empirically based metabolic layouts. In this work, we present a new plugin for the OptFlux[1] framework, an open-source and modular software to support in silico Metabolic Engineering. The main goals of this novel plugin are to allow the creation, edition and visualization of metabolic layouts and to provide a user-friendly way to analyze results generated by other tools in OptFlux, such as phenotype simulation and strain optimization results. To represent metabolic layouts, the software uses a directed bipartite graph, where nodes are reactions and metabolites. Metabolites can be marked as a currency metabolite, a feature used to represent cofactors or other secondary metabolites. Reactions represent interactions between two sets of metabolites (products and reactants). The plugin is able to read metabolic layouts from several file formats, including specialized formats, such as CellDesigner SBML variant, KEGG -ML or BIGG maps, and generic representations, such as SBGN-ML or XGMML (a format that is supported, for instance, by Cytoscape). Users can also create their own layouts using a set of reactions from a pre-loaded model. The framework uses a force directed layout[2] strategy to calculate the best position of each node and allows the user to fix, replicate or merge nodes to simplify the visualization. An important feature is the ability to overlap results from other OptFlux plug-ins over the metabolic layout. An example is the overlap of flux distributions, where the thickness of the reaction edges are changed according to the flux values, while the genetic transformations (e.g. deletions, over/under expression) are also highlighted, with the relevant nodes changed in color and shape. Users are also able to compare flux distributions

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
    corecore