73 research outputs found

    Influence of experimental set-up and methodology for measurements of metabolic rates and critical swimming speed in Atlantic salmon Salmo salar

    Get PDF
    In this study, swim‐tunnel respirometry was performed on Atlantic salmon Salmo salar post‐smolts in a 90 l respirometer on individuals and compared with groups or individuals of similar sizes tested in a 1905 l respirometer, to determine if differences between set‐ups and protocols exist. Standard metabolic rate (SMR) derived from the lowest oxygen uptake rate cycles over a 20 h period was statistically similar to SMR derived from back extrapolating to zero swim speed. However, maximum metabolic rate (MMR) estimates varied significantly between swimming at maximum speed, following an exhaustive chase protocol and during confinement stress. Most notably, the mean (±SE) MMR was 511 ± 15 mg O2 kg−1 h−1 in the swim test which was 52% higher compared with 337 ± 9 mg O2 kg−1 in the chase protocol, showing that the latter approach causes a substantial underestimation. Performing group respirometry in the larger swim tunnel provided statistically similar estimates of SMR and MMR as for individual fish tested in the smaller tunnel. While we hypothesised a larger swim section and swimming in groups would improve swimming performance, Ucrit was statistically similar between both set‐ups and statistically similar between swimming alone v. swimming in groups in the larger set‐up, suggesting that this species does not benefit hydrodynamically from swimming in a school in these conditions. Different methods and set‐ups have their own respective limitations and advantages depending on the questions being addressed, the time available, the number of replicates required and if supplementary samplings such as blood or gill tissues are needed. Hence, method choice should be carefully considered when planning experiments and when comparing previous studies.publishedVersio

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1ÎČ, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1ÎČ innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    The ineffectiveness of entrepreneurship policy:Is policy formulation to blame?

    Get PDF
    Entrepreneurship policy has been criticised for its lack of effectiveness. Some scholars, such as Scott Shane in this journal, have argued that it is ‘bad’ public policy. But this simply begs the question why the legislative process should generate bad policy? To answer this question this study examines the UK’s enterprise policy process in the 2009–2010 period. It suggests that a key factor for the ineffectiveness of policy is how it is formulated. This stage in the policy process is seldom visible to those outside of government departments and has been largely ignored by prior research. The application of institutional theory provides a detailed theoretical understanding of the actors and the process by which enterprise policy is formulated. We find that by opening up the ‘black box’ of enterprise policy formulation, the process is dominated by powerful actors who govern the process with their interests

    Time-Frequency Characterization of Femtosecond Extreme Ultraviolet Pulses

    Get PDF
    A measurement of chirp and pulse duration of fifth harmonic of a frequency-doubled Ti:sapphire laser was presented. The photoelectron signal due to cross correlation of harmonics generated by 400 nm blue light and an 800 nm infrared probe pulse, was measured using energy resolved cross-correlation method. Results demonstrated that the technique could be used to characterize the time-frequency behavior of much higher-order harmonics

    Thermal acclimation increases the stability of a predator-prey interaction in warmer environments.

    Get PDF
    Global warming over the next century is likely to alter the energy demands of consumers and thus the strengths of their interactions with their resources. The subsequent cascading effects on population biomasses could have profound effects on food web stability. One key mechanism by which organisms can cope with a changing environment is phenotypic plasticity, such as acclimation to warmer conditions through reversible changes in their physiology. Here, we measured metabolic rates and functional responses in laboratory experiments for a widespread predator-prey pair of freshwater invertebrates, sampled from across a natural stream temperature gradient in Iceland (4-18℃). This enabled us to parameterize a Rosenzweig-MacArthur population dynamical model to study the effect of thermal acclimation on the persistence of the predator-prey pairs in response to warming. Acclimation to higher temperatures either had neutral effects or reduced the thermal sensitivity of both metabolic and feeding rates for the predator, increasing its energetic efficiency. This resulted in greater stability of population dynamics, as acclimation to higher temperatures increased the biomass of both predator and prey populations with warming. These findings indicate that phenotypic plasticity can act as a buffer against the impacts of environmental warming. As a consequence, predator-prey interactions between ectotherms may be less sensitive to future warming than previously expected, but this requires further investigation across a broader range of interacting species

    Femtosecond pump-probe photoelectron spectroscopy of predissociative Rydberg states in acetylene

    No full text
    We employ a pump-probe approach to molecular photoionization to study fast dissociation of Rydberg states in acetylene. By using time-resolved photoelectron spectroscopy to study the electronic state of the resulting ions we are able to monitor the system continuously during dissociation or rearrangement. We find that the predissociative lifetime for the 3R‮ (vâ€Č2 = 1) Rydberg state is about 150 fs. We demonstrate a powerful new technique using time-correlated femtosecond harmonic generation and laser light pulses to study the time evolution of ultrafast dynamic processes in molecules
    • 

    corecore