43 research outputs found

    Comparison of reconfigurable structures for flexible word-length multiplication

    Get PDF
    Binary multiplication continues to be one of the essential arithmetic operations in digital circuits. Even though field-programmable gate arrays (FPGAs) are becoming more and more powerful these days, the vendors cannot avoid implementing multiplications with high word-lengths using embedded blocks instead of configurable logic. But on the other hand, the circuit's efficiency decreases if the provided word-length of the hard-wired multipliers exceeds the precision requirements of the algorithm mapped into the FPGA. Thus it is beneficial to use multiplier blocks with configurable word-length, optimized for area, speed and power dissipation, e.g. regarding digital signal processing (DSP) applications. <br><br> In this contribution, we present different approaches and structures for the realization of a multiplication with variable precision and perform an objective comparison. This includes one approach based on a modified Baugh and Wooley algorithm and three structures using Booth's arithmetic operand recoding with different array structures. All modules have the option to compute signed two's complement fix-point numbers either as an individual computing unit or interconnected to a superior array. Therefore, a high throughput at low precision through parallelism, or a high precision through concatenation can be achieved

    Diagnosis and Management of Infantile Hemangioma

    Get PDF
    Infantile hemangiomas (IHs) are the most common tumors of childhood. Unlike other tumors, they have the unique ability to involute after proliferation, often leading primary care providers to assume they will resolve without intervention or consequence. Unfortunately, a subset of IHs rapidly develop complications, resulting in pain, functional impairment, or permanent disfigurement. As a result, the primary clinician has the task of determining which lesions require early consultation with a specialist. Although several recent reviews have been published, this clinical report is the first based on input from individuals representing the many specialties involved in the treatment of IH. Its purpose is to update the pediatric community regarding recent discoveries in IH pathogenesis, treatment, and clinical associations and to provide a basis for clinical decision-making in the management of IH

    Management of infantile hemangiomas during the COVID pandemic

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The COVID‐19 pandemic has caused significant shifts in patient care including a steep decline in ambulatory visits and a marked increase in the use of telemedicine. Infantile hemangiomas (IH) can require urgent evaluation and risk stratification to determine which infants need treatment and which can be managed with continued observation. For those requiring treatment, prompt initiation decreases morbidity and improves long‐term outcomes. The Hemangioma Investigator Group has created consensus recommendations for management of IH via telemedicine. FDA/EMA‐approved monitoring guidelines, clinical practice guidelines, and relevant, up‐to‐date publications regarding initiation and monitoring of beta‐blocker therapy were used to inform the recommendations. Clinical decision‐making guidelines about when telehealth is an appropriate alternative to in‐office visits, including medication initiation, dosage changes, and ongoing evaluation, are included. The importance of communication with caregivers in the context of telemedicine is discussed, and online resources for both hemangioma education and propranolol therapy are provided

    Assimilation—On (Not) Turning White: Memory and the Narration of the Postwar History of Japanese Canadians in Southern Alberta

    Get PDF
    This essay explores understandings of “race” – specifically, what it means to be Japanese – of nisei (“second generation”) individuals who acknowledge their near complete assimilation structurally and normatively into the Canadian mainstream. In historically-contextualized analyses of memory fragments from oral-history interviews conducted between 2011-2017, it focusses on voices and experiences of southern Alberta, an area whose significance to local, national, continental, and trans-Pacific histories of people of Japanese descent is belied by a lack of dedicated scholarly attention. In this light, this essay reveals how the fact of being Japanese in the latter half of the twentieth century was strategically central to nisei lives as individuals and in their communities. In imagining a racial hierarchy whose apex they knew they could never share with the hakujin (whites), the racial heritage they nevertheless inherited and would bequeath could be so potent as to reverse the direction of the colonial gaze with empowering effects in individual engagements then and as remembered now. We see how the narration and validation of one’s life is the navigation of wider historical contexts, the shaping of the post-colonial legacy of Imperial cultures, as Britain and Japan withdrew from their erstwhile colonial projects in Canada

    Configurable blocks for multi-precision multiplication

    No full text
    Implementing arithmetic-heavy applications such as filters or neural networks in FPGAs relies to a great extent on the realization of efficient multipliers. However, implementing high-precision multipliers only with configurable logic leads to a large lookup-table usage and considerable routing efforts. Thus, hard-wired multiplier blocks are embedded in modern FPGA devices in order to relieve the resources, but their word-length is still fixed to e.g. 18×18-bit in the Xilinx Virtex-IV DSP48 slices. In this paper, we describe our approach of creating configurable blocks suitable for multi-precision multiplication with a word-length that can be changed at runtime. We present a novel block-serial design that shows a 60% area advantage over a fully parallel multiplier and also a larger structure that can be partitioned into several fully functional smaller multipliers working simultaneously in different configurations. © 2008 IEEE
    corecore