457 research outputs found

    The highest frequency detection of a radio relic : 16 GHz AMI observations of the 'Sausage' cluster

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society: Letters. © 2014 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We observed the cluster CIZA J2242.8+5301 with the Arcminute Microkelvin Imager at 16 GHz and present the first high radio-frequency detection of diffuse, non-thermal cluster emission. This cluster hosts a variety of bright, extended, steep-spectrum synchrotron-emitting radio sources, associated with the intracluster medium, called radio relics. Most notably, the northern, Mpc-wide, narrow relic provides strong evidence for diffusive shock acceleration in clusters. We detect a puzzling, flat-spectrum, diffuse extension of the southern relic, which is not visible in the lower radio-frequency maps. The northern radio relic is unequivocally detected and measures an integrated flux of 1.2 ± 0.3 mJy. While the low-frequency (<2 GHz) spectrum of the northern relic is well represented by a power law, it clearly steepens towards 16 GHz. This result is inconsistent with diffusive shock acceleration predictions of ageing plasma behind a uniform shock front. The steepening could be caused by an inhomogeneous medium with temperature/density gradients or by lower acceleration efficiencies of high energy electrons. Further modelling is necessary to explain the observed spectrum.Peer reviewe

    The RATT PARROT: serendipitous discovery of a peculiarly scintillating pulsar in MeerKAT imaging observations of the Great Saturn-Jupiter Conjunction of 2020. I. Dynamic imaging and data analysis

    Full text link
    We report on a radiopolarimetric observation of the Saturn-Jupiter Great Conjunction of 2020 using the MeerKAT L-band system, initially carried out for science verification purposes, which yielded a serendipitous discovery of a pulsar. The radiation belts of Jupiter are very bright and time variable: coupled with the sensitivity of MeerKAT, this necessitated development of dynamic imaging techniques, reported on in this work. We present a deep radio "movie" revealing Jupiter's rotating magnetosphere, a radio detection of Callisto, and numerous background radio galaxies. We also detect a bright radio transient in close vicinity to Saturn, lasting approximately 45 minutes. Follow-up deep imaging observations confirmed this as a faint compact variable radio source, and yielded detections of pulsed emission by the commensal MeerTRAP search engine, establishing the object's nature as a radio emitting neutron star, designated PSR J2009-2026. A further observation combining deep imaging with the PTUSE pulsar backend measured detailed dynamic spectra for the object. While qualitatively consistent with scintillation, the magnitude of the magnification events and the characteristic timescales are odd. We are tentatively designating this object a pulsar with anomalous refraction recurring on odd timescales (PARROT). As part of this investigation, we present a pipeline for detection of variable sources in imaging data, with dynamic spectra and lightcurves as the products, and compare dynamic spectra obtained from visibility data with those yielded by PTUSE. We discuss MeerKAT's capabilities and prospects for detecting more of such transients and variables.Comment: 21 pages, 17 figures, submitted to MNRA

    Mendelian randomization reveals unexpected effects of CETP on the lipoprotein profile

    Get PDF
    According to the current dogma, cholesteryl ester transfer protein (CETP) decreases high-density lipoprotein (HDL)-cholesterol (C) and increases low-density lipoprotein (LDL)-C. However, detailed insight into the effects of CETP on lipoprotein subclasses is lacking. Therefore, we used a Mendelian randomization approach based on a genetic score for serum CETP concentration (rs247616, rs12720922 and rs1968905) to estimate causal effects per unit (mu g/mL) increase in CETP on 159 standardized metabolic biomarkers, primarily lipoprotein subclasses. Metabolic biomarkers were measured by nuclear magnetic resonance (NMR) in 5672 participants of the Netherlands Epidemiology of Obesity (NEO) study. Higher CETP concentrations were associated with less large HDL (largest effect XL-HDL-C, P = 6 x 10(-22)) and more small VLDL components (largest effect S-VLDL cholesteryl esters, P = 6 x 10(-6)). No causal effects were observed with LDL subclasses. All these effects were replicated in an independent cohort from European ancestry (MAGNETIC NMR GWAS; n similar to 20,000). Additionally, we assessed observational associations between ELISA-measured CETP concentration and metabolic measures. In contrast to results from Mendelian randomization, observationally, CETP concentration predominantly associated with more VLDL, IDL and LDL components. Our results show that CETP is an important causal determinant of HDL and VLDL concentration and composition, which may imply that the CETP inhibitor anacetrapib decreased cardiovascular disease risk through specific reduction of small VLDL rather than LDL. The contrast between genetic and observational associations might be explained by a high capacity of VLDL, IDL and LDL subclasses to carry CETP, thereby concealing causal effects on HDL.Peer reviewe

    Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array

    Get PDF
    When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.Comment: Submitted to Nuclear Instruments and Methods in Physics Research Section

    Atomic Supersymmetry, Rydberg Wave Packets, and Radial Squeezed States

    Get PDF
    We study radial wave packets produced by short-pulsed laser fields acting on Rydberg atoms, using analytical tools from supersymmetry-based quantum-defect theory. We begin with a time-dependent perturbative calculation for alkali-metal atoms, incorporating the atomic-excitation process. This provides insight into the general wave packet behavior and demonstrates agreement with conventional theory. We then obtain an alternative analytical description of a radial wave packet as a member of a particular family of squeezed states, which we call radial squeezed states. By construction, these have close to minimum uncertainty in the radial coordinates during the first pass through the outer apsidal point. The properties of radial squeezed states are investigated, and they are shown to provide a description of certain aspects of Rydberg atoms excited by short-pulsed laser fields. We derive expressions for the time evolution and the autocorrelation of the radial squeezed states, and we study numerically and analytically their behavior in several alkali-metal atoms. Full and fractional revivals are observed. Comparisons show agreement with other theoretical results and with experiment.Comment: published in Physical Review

    Long-Term Evolution and Revival Structure of Rydberg Wave Packets for Hydrogen and Alkali-Metal Atoms

    Full text link
    This paper begins with an examination of the revival structure and long-term evolution of Rydberg wave packets for hydrogen. We show that after the initial cycle of collapse and fractional/full revivals, which occurs on the time scale trevt_{\rm rev}, a new sequence of revivals begins. We find that the structure of the new revivals is different from that of the fractional revivals. The new revivals are characterized by periodicities in the motion of the wave packet with periods that are fractions of the revival time scale trevt_{\rm rev}. These long-term periodicities result in the autocorrelation function at times greater than trevt_{\rm rev} having a self-similar resemblance to its structure for times less than trevt_{\rm rev}. The new sequence of revivals culminates with the formation of a single wave packet that more closely resembles the initial wave packet than does the full revival at time trevt_{\rm rev}, i.e., a superrevival forms. Explicit examples of the superrevival structure for both circular and radial wave packets are given. We then study wave packets in alkali-metal atoms, which are typically used in experiments. The behavior of these packets is affected by the presence of quantum defects that modify the hydrogenic revival time scales and periodicities. Their behavior can be treated analytically using supersymmetry-based quantum-defect theory. We illustrate our results for alkali-metal atoms with explicit examples of the revival structure for radial wave packets in rubidium.Comment: To appear in Physical Review A, vol. 51, June 199

    QUBIC: The QU Bolometric Interferometer for Cosmology

    Get PDF
    One of the major challenges of modern cosmology is the detection of B-mode polarization anisotropies in the CMB. These originate from tensor fluctuations of the metric produced during the inflationary phase. Their detection would therefore constitute a major step towards understanding the primordial Universe. The expected level of these anisotropies is however so small that it requires a new generation of instruments with high sensitivity and extremely good control of systematic effects. We propose the QUBIC instrument based on the novel concept of bolometric interferometry, bringing together the sensitivity advantages of bolometric detectors with the systematics effects advantages of interferometry. Methods: The instrument will directly observe the sky through an array of entry horns whose signals will be combined together using an optical combiner. The whole set-up is located inside a cryostat. Polarization modulation will be achieved using a rotating half-wave plate and interference fringes will be imaged on two focal planes (separated by a polarizing grid) tiled with bolometers. We show that QUBIC can be considered as a synthetic imager, exactly similar to a usual imager but with a synthesized beam formed by the array of entry horns. Scanning the sky provides an additional modulation of the signal and improve the sky coverage shape. The usual techniques of map-making and power spectrum estimation can then be applied. We show that the sensitivity of such an instrument is comparable with that of an imager with the same number of horns. We anticipate a low level of beam-related systematics thanks to the fact that the synthesized beam is determined by the location of the primary horns. Other systematics should be under good control thanks to an autocalibration technique, specific to our concept, that will permit the accurate determination of most of the systematics parameters.Comment: 12 pages, 10 figures, submitted to Astronomy and Astrophysic

    First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256

    Get PDF
    Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR Low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 \pm 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 \pm 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last \sim 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.Comment: 13 pages, 13 figures, accepted for publication in A\&A on April 12, 201

    Edge-Magnetoplasmon Wave-Packet Revivals in the Quantum Hall Effect

    Get PDF
    The quantum Hall effect is necessarily accompanied by low-energy excitations localized at the edge of a two-dimensional electron system. For the case of electrons interacting via the long-range Coulomb interaction, these excitations are edge magnetoplasmons. We address the time evolution of localized edge-magnetoplasmon wave packets. On short times the wave packets move along the edge with classical E cross B drift. We show that on longer times the wave packets can have properties similar to those of the Rydberg wave packets that are produced in atoms using short-pulsed lasers. In particular, we show that edge-magnetoplasmon wave packets can exhibit periodic revivals in which a dispersed wave packet reassembles into a localized one. We propose the study of edge-magnetoplasmon wave packets as a tool to investigate dynamical properties of integer and fractional quantum-Hall edges. Various scenarios are discussed for preparing the initial wave packet and for detecting it at a later time. We comment on the importance of magnetoplasmon-phonon coupling and on quantum and thermal fluctuations.Comment: 18 pages, RevTex, 7 figures and 2 tables included, Fig. 5 was originally 3Mbyte and had to be bitmapped for submission to archive; in the process it acquired distracting artifacts, to upload the better version, see http://physics.indiana.edu/~uli/publ/projects.htm
    corecore