457 research outputs found
The highest frequency detection of a radio relic : 16 GHz AMI observations of the 'Sausage' cluster
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society: Letters. © 2014 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We observed the cluster CIZA J2242.8+5301 with the Arcminute Microkelvin Imager at 16 GHz and present the first high radio-frequency detection of diffuse, non-thermal cluster emission. This cluster hosts a variety of bright, extended, steep-spectrum synchrotron-emitting radio sources, associated with the intracluster medium, called radio relics. Most notably, the northern, Mpc-wide, narrow relic provides strong evidence for diffusive shock acceleration in clusters. We detect a puzzling, flat-spectrum, diffuse extension of the southern relic, which is not visible in the lower radio-frequency maps. The northern radio relic is unequivocally detected and measures an integrated flux of 1.2 ± 0.3 mJy. While the low-frequency (<2 GHz) spectrum of the northern relic is well represented by a power law, it clearly steepens towards 16 GHz. This result is inconsistent with diffusive shock acceleration predictions of ageing plasma behind a uniform shock front. The steepening could be caused by an inhomogeneous medium with temperature/density gradients or by lower acceleration efficiencies of high energy electrons. Further modelling is necessary to explain the observed spectrum.Peer reviewe
The RATT PARROT: serendipitous discovery of a peculiarly scintillating pulsar in MeerKAT imaging observations of the Great Saturn-Jupiter Conjunction of 2020. I. Dynamic imaging and data analysis
We report on a radiopolarimetric observation of the Saturn-Jupiter Great
Conjunction of 2020 using the MeerKAT L-band system, initially carried out for
science verification purposes, which yielded a serendipitous discovery of a
pulsar. The radiation belts of Jupiter are very bright and time variable:
coupled with the sensitivity of MeerKAT, this necessitated development of
dynamic imaging techniques, reported on in this work. We present a deep radio
"movie" revealing Jupiter's rotating magnetosphere, a radio detection of
Callisto, and numerous background radio galaxies. We also detect a bright radio
transient in close vicinity to Saturn, lasting approximately 45 minutes.
Follow-up deep imaging observations confirmed this as a faint compact variable
radio source, and yielded detections of pulsed emission by the commensal
MeerTRAP search engine, establishing the object's nature as a radio emitting
neutron star, designated PSR J2009-2026. A further observation combining deep
imaging with the PTUSE pulsar backend measured detailed dynamic spectra for the
object. While qualitatively consistent with scintillation, the magnitude of the
magnification events and the characteristic timescales are odd. We are
tentatively designating this object a pulsar with anomalous refraction
recurring on odd timescales (PARROT). As part of this investigation, we present
a pipeline for detection of variable sources in imaging data, with dynamic
spectra and lightcurves as the products, and compare dynamic spectra obtained
from visibility data with those yielded by PTUSE. We discuss MeerKAT's
capabilities and prospects for detecting more of such transients and variables.Comment: 21 pages, 17 figures, submitted to MNRA
Mendelian randomization reveals unexpected effects of CETP on the lipoprotein profile
According to the current dogma, cholesteryl ester transfer protein (CETP) decreases high-density lipoprotein (HDL)-cholesterol (C) and increases low-density lipoprotein (LDL)-C. However, detailed insight into the effects of CETP on lipoprotein subclasses is lacking. Therefore, we used a Mendelian randomization approach based on a genetic score for serum CETP concentration (rs247616, rs12720922 and rs1968905) to estimate causal effects per unit (mu g/mL) increase in CETP on 159 standardized metabolic biomarkers, primarily lipoprotein subclasses. Metabolic biomarkers were measured by nuclear magnetic resonance (NMR) in 5672 participants of the Netherlands Epidemiology of Obesity (NEO) study. Higher CETP concentrations were associated with less large HDL (largest effect XL-HDL-C, P = 6 x 10(-22)) and more small VLDL components (largest effect S-VLDL cholesteryl esters, P = 6 x 10(-6)). No causal effects were observed with LDL subclasses. All these effects were replicated in an independent cohort from European ancestry (MAGNETIC NMR GWAS; n similar to 20,000). Additionally, we assessed observational associations between ELISA-measured CETP concentration and metabolic measures. In contrast to results from Mendelian randomization, observationally, CETP concentration predominantly associated with more VLDL, IDL and LDL components. Our results show that CETP is an important causal determinant of HDL and VLDL concentration and composition, which may imply that the CETP inhibitor anacetrapib decreased cardiovascular disease risk through specific reduction of small VLDL rather than LDL. The contrast between genetic and observational associations might be explained by a high capacity of VLDL, IDL and LDL subclasses to carry CETP, thereby concealing causal effects on HDL.Peer reviewe
Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array
When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a
radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to
detect these pulses. In this work we propose an efficient trigger
implementation for LOFAR optimized for the observation of short radio pulses.Comment: Submitted to Nuclear Instruments and Methods in Physics Research
Section
Atomic Supersymmetry, Rydberg Wave Packets, and Radial Squeezed States
We study radial wave packets produced by short-pulsed laser fields acting on
Rydberg atoms, using analytical tools from supersymmetry-based quantum-defect
theory. We begin with a time-dependent perturbative calculation for
alkali-metal atoms, incorporating the atomic-excitation process. This provides
insight into the general wave packet behavior and demonstrates agreement with
conventional theory. We then obtain an alternative analytical description of a
radial wave packet as a member of a particular family of squeezed states, which
we call radial squeezed states. By construction, these have close to minimum
uncertainty in the radial coordinates during the first pass through the outer
apsidal point. The properties of radial squeezed states are investigated, and
they are shown to provide a description of certain aspects of Rydberg atoms
excited by short-pulsed laser fields. We derive expressions for the time
evolution and the autocorrelation of the radial squeezed states, and we study
numerically and analytically their behavior in several alkali-metal atoms. Full
and fractional revivals are observed. Comparisons show agreement with other
theoretical results and with experiment.Comment: published in Physical Review
Long-Term Evolution and Revival Structure of Rydberg Wave Packets for Hydrogen and Alkali-Metal Atoms
This paper begins with an examination of the revival structure and long-term
evolution of Rydberg wave packets for hydrogen. We show that after the initial
cycle of collapse and fractional/full revivals, which occurs on the time scale
, a new sequence of revivals begins. We find that the structure of
the new revivals is different from that of the fractional revivals. The new
revivals are characterized by periodicities in the motion of the wave packet
with periods that are fractions of the revival time scale . These
long-term periodicities result in the autocorrelation function at times greater
than having a self-similar resemblance to its structure for times
less than . The new sequence of revivals culminates with the
formation of a single wave packet that more closely resembles the initial wave
packet than does the full revival at time , i.e., a superrevival
forms. Explicit examples of the superrevival structure for both circular and
radial wave packets are given. We then study wave packets in alkali-metal
atoms, which are typically used in experiments. The behavior of these packets
is affected by the presence of quantum defects that modify the hydrogenic
revival time scales and periodicities. Their behavior can be treated
analytically using supersymmetry-based quantum-defect theory. We illustrate our
results for alkali-metal atoms with explicit examples of the revival structure
for radial wave packets in rubidium.Comment: To appear in Physical Review A, vol. 51, June 199
QUBIC: The QU Bolometric Interferometer for Cosmology
One of the major challenges of modern cosmology is the detection of B-mode
polarization anisotropies in the CMB. These originate from tensor fluctuations
of the metric produced during the inflationary phase. Their detection would
therefore constitute a major step towards understanding the primordial
Universe. The expected level of these anisotropies is however so small that it
requires a new generation of instruments with high sensitivity and extremely
good control of systematic effects. We propose the QUBIC instrument based on
the novel concept of bolometric interferometry, bringing together the
sensitivity advantages of bolometric detectors with the systematics effects
advantages of interferometry. Methods: The instrument will directly observe the
sky through an array of entry horns whose signals will be combined together
using an optical combiner. The whole set-up is located inside a cryostat.
Polarization modulation will be achieved using a rotating half-wave plate and
interference fringes will be imaged on two focal planes (separated by a
polarizing grid) tiled with bolometers. We show that QUBIC can be considered as
a synthetic imager, exactly similar to a usual imager but with a synthesized
beam formed by the array of entry horns. Scanning the sky provides an
additional modulation of the signal and improve the sky coverage shape. The
usual techniques of map-making and power spectrum estimation can then be
applied. We show that the sensitivity of such an instrument is comparable with
that of an imager with the same number of horns. We anticipate a low level of
beam-related systematics thanks to the fact that the synthesized beam is
determined by the location of the primary horns. Other systematics should be
under good control thanks to an autocalibration technique, specific to our
concept, that will permit the accurate determination of most of the systematics
parameters.Comment: 12 pages, 10 figures, submitted to Astronomy and Astrophysic
First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256
Abell 2256 is one of the best known examples of a galaxy cluster hosting
large-scale diffuse radio emission that is unrelated to individual galaxies. It
contains both a giant radio halo and a relic, as well as a number of head-tail
sources and smaller diffuse steep-spectrum radio sources. The origin of radio
halos and relics is still being debated, but over the last years it has become
clear that the presence of these radio sources is closely related to galaxy
cluster merger events. Here we present the results from the first LOFAR Low
band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our
knowledge, the image presented in this paper at 63 MHz is the deepest ever
obtained at frequencies below 100 MHz in general. Both the radio halo and the
giant relic are detected in the image at 63 MHz, and the diffuse radio emission
remains visible at frequencies as low as 20 MHz. The observations confirm the
presence of a previously claimed ultra-steep spectrum source to the west of the
cluster center with a spectral index of -2.3 \pm 0.4 between 63 and 153 MHz.
The steep spectrum suggests that this source is an old part of a head-tail
radio source in the cluster. For the radio relic we find an integrated spectral
index of -0.81 \pm 0.03, after removing the flux contribution from the other
sources. This is relatively flat which could indicate that the efficiency of
particle acceleration at the shock substantially changed in the last \sim 0.1
Gyr due to an increase of the shock Mach number. In an alternative scenario,
particles are re-accelerated by some mechanism in the downstream region of the
shock, resulting in the relatively flat integrated radio spectrum. In the radio
halo region we find indications of low-frequency spectral steepening which may
suggest that relativistic particles are accelerated in a rather inhomogeneous
turbulent region.Comment: 13 pages, 13 figures, accepted for publication in A\&A on April 12,
201
Edge-Magnetoplasmon Wave-Packet Revivals in the Quantum Hall Effect
The quantum Hall effect is necessarily accompanied by low-energy excitations
localized at the edge of a two-dimensional electron system. For the case of
electrons interacting via the long-range Coulomb interaction, these excitations
are edge magnetoplasmons. We address the time evolution of localized
edge-magnetoplasmon wave packets. On short times the wave packets move along
the edge with classical E cross B drift. We show that on longer times the wave
packets can have properties similar to those of the Rydberg wave packets that
are produced in atoms using short-pulsed lasers. In particular, we show that
edge-magnetoplasmon wave packets can exhibit periodic revivals in which a
dispersed wave packet reassembles into a localized one. We propose the study of
edge-magnetoplasmon wave packets as a tool to investigate dynamical properties
of integer and fractional quantum-Hall edges. Various scenarios are discussed
for preparing the initial wave packet and for detecting it at a later time. We
comment on the importance of magnetoplasmon-phonon coupling and on quantum and
thermal fluctuations.Comment: 18 pages, RevTex, 7 figures and 2 tables included, Fig. 5 was
originally 3Mbyte and had to be bitmapped for submission to archive; in the
process it acquired distracting artifacts, to upload the better version, see
http://physics.indiana.edu/~uli/publ/projects.htm
- …