7 research outputs found
qpMerge: Merging different peptide isoforms using a motif centric strategy
Accurate quantification and enumeration of peptide motifs is hampered by redundancy in peptide identification. A single phosphorylation motif may be split across charge states, alternative modifications (e.g. acetylation and oxidation), and multiple miss-cleavage sites which render the biological interpretation of MS data a challenge. In addition motif redundancy can affect quantitative and statistical analysis and prevent a realistic comparison of peptide numbers between datasets. In this study, we present a merging tool set developed for the Galaxy workflow environment to achieve a non-redundant set of quantifications for phospho-motifs. We present a Galaxy workflow to merge three exemplar dataset, and observe reduced phospho-motif redundancy and decreased replicate variation. The qpMerge tools provide a straightforward and reusable approach to facilitating phospho-motif analysis.
The source-code and wiki documentation is publically available at http://sourceforge.net/projects/ppmerge. The galaxy pipeline used in the exemplar analysis can be found at http://www.myexperiment.org/workflows/4186
The reduced kinome of Ostreococcus tauri:core eukaryotic signalling components in a tractable model species
BACKGROUND: The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. RESULTS: Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways â TOR, MAPK, and the circadian clock â we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. CONCLUSIONS: We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-640) contains supplementary material, which is available to authorized users
Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor
We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclearâencoded sigma subunits of plastidâencoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by lightâinduced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks
The coenzyme thiamine diphosphate displays a daily rhythm in the Arabidopsis nucleus
In plants, metabolic homeostasisâthe driving force of growth and developmentâis achieved through the dynamic behavior of a network of enzymes, many of which depend on coenzymes for activity. The circadian clock is established to influence coordination of supply and demand of metabolites. Metabolic oscillations independent of the circadian clock, particularly at the subcellular level is unexplored. Here, we reveal a metabolic rhythm of the essential coenzyme thiamine diphosphate (TDP) in the Arabidopsis nucleus. We show there is temporal separation of the clock control of cellular biosynthesis and transport of TDP at the transcriptional level. Taking advantage of the sole reported riboswitch metabolite sensor in plants, we show that TDP oscillates in the nucleus. This oscillation is a function of a light-dark cycle and is independent of circadian clock control. The findings are important to understand plant fitness in terms of metabolite rhythms.ISSN:2399-364