
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A phospho-dawn of protein modification anticipates light onset
in the picoeukaryote O. tauri

Citation for published version:
Noordally, ZB, Hindle, MM, Martin, SF, Seaton, DD, Simpson, TI, Le Bihan, T & Millar, AJ 2023, 'A
phospho-dawn of protein modification anticipates light onset in the picoeukaryote O. tauri', Journal of
Experimental Botany. https://doi.org/10.1093/jxb/erad290

Digital Object Identifier (DOI):
10.1093/jxb/erad290

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Experimental Botany

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 16. Aug. 2023

https://doi.org/10.1093/jxb/erad290
https://doi.org/10.1093/jxb/erad290
https://www.research.ed.ac.uk/en/publications/962217d5-5eef-4fc2-9b11-3c9b78e22ed3


1 

 

A phospho-dawn of protein modification anticipates light onset in the 1 

picoeukaryote O. tauri 2 

 3 

Running title: Algal phospho- and protein rhythms 4 

 5 

Zeenat B. Noordally1,2*, Matthew M. Hindle1*, Sarah F. Martin1,3, Daniel D. Seaton1,4, 6 

T. Ian Simpson5, Thierry Le Bihan1**, Andrew J. Millar1** 7 

 8 
1SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, 9 

UK. 5Institute for Adaptive and Neural Computation, School of Informatics, University of 10 

Edinburgh, Edinburgh EH8 9AB, UK.  11 

* These authors contributed equally to this work.  12 

** corresponding authors: tlebihan@gmail.com; andrew.millar@ed.ac.uk +44 131 651 3325 13 
 

14 
2 Present address: Norfolk County Council, Community and Environmental Services, County 15 

Hall, Martineau Lane, Norwich NR1 2DH, United Kingdom. 16 
3 Present address: Office of the Chief Statistician and Strategic Analysis, Scottish 17 

Government, Edinburgh EH1 3DG, UK 18 
4 Present address: GlaxoSmithKline, Stevenage SG1 2NY, UK 19 

 20 

Author; Email, ORCID: 21 

Zeenat Noordally; zeenat.noordallyed@gmail.com, 0000-0003-2817-1330 22 

Matthew Hindle; matthew.hindle@gmail.com, 0000-0002-6870-4069 23 

Sarah F. Martin; sarahfriedemartin@gmail.com, - 24 

Daniel Seaton; daniel.d.seaton@gmail.com, 0000-0002-5222-3893 25 

Ian Simpson; Ian.Simpson@ed.ac.uk, 0000-0003-0495-7187 26 

Thierry Lebihan; tlebihan@gmail.com, 0000-0003-0498-8063 27 

Andrew Millar; andrew.millar@ed.ac.uk, 0000-0003-1756-3654 28 

URL https://www.ed.ac.uk/biology/centre-engineering-biology 29 

 30 

Second revision submitted 18 July 2023; Main text: ~6200 words, excluding Methods 2943 31 

words; 5 figures; 11 Supplementary Figures; 6 Supplementary Tables.  32 



2 

 

Highlight (<30 words)  33 

The phosphorylation of 66% of phosphoproteins was rhythmic under light-dark cycles, and 34 

suggested circadian control by particular kinases. The <10% rhythmic protein profiles 35 

reflected light-stimulated protein synthesis in this microalga. 36 

Abstract 37 

Diel regulation of protein levels and protein modification had been less studied than 38 

transcript rhythms. Here, we compare transcriptome data under light-dark cycles to partial 39 

proteome and phosphoproteome data, assayed using shotgun mass-spectrometry, from the 40 

alga Ostreococcus tauri, the smallest free-living eukaryote. 10% of quantified proteins but 41 

two-thirds of phosphoproteins were rhythmic. Mathematical modelling showed that light-42 

stimulated protein synthesis can account for the observed clustering of protein peaks in the 43 

daytime. Prompted by night-peaking and apparently dark-stable proteins, we also tested 44 

cultures under prolonged darkness, where the proteome changed less than under the diel 45 

cycle. Among the dark-stable proteins were prasinophyte-specific sequences that were also 46 

reported to accumulate when O. tauri formed lipid droplets. In the phosphoproteome, 39% of 47 

rhythmic phospho-sites reached peak levels just before dawn. This anticipatory 48 

phosphorylation suggests that a clock-regulated phospho-dawn prepares green cells for 49 

daytime functions. Acid-directed and proline-directed protein phosphorylation sites were 50 

regulated in antiphase, implicating the clock-related, casein kinases 1 and 2 in phase-specific 51 

regulation, alternating with the CMGC protein kinase family. Understanding the dynamic 52 

phosphoprotein network should be facilitated by the minimal kinome and proteome of O. 53 

tauri. The data are available from ProteomeXchange, with identifiers PXD001734, 54 

PXD001735 and PXD002909.  55 

Keywords and Abbreviations 56 
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marine microalgae; photosynthetic pico-eukaryotes 58 

 59 

Abbreviations: PM, phosphopeptide motif; LD, light-dark cycles; ZT, Zeitgeber Time; DA, 60 

dark adaptation; PC, principal component; CK1, casein kinase 1; CK2, casein kinase 2; 61 

GSK3, Glycogen Synthase Kinase 3; CMGC, Cyclin-dependent kinase, Mitogen-activated 62 
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Introduction  66 

Responses to light are critical for organisms of the green lineage (Noordally and Millar, 67 

2015; Paajanen et al., 2021). The rapid effects of photosynthetic light harvesting, for example 68 

on redox state and sugar metabolism, are complemented by signalling photoreceptors 69 

(Whitelam and Halliday, 2007) and the slower, 24-hour regulation by the biological clock 70 

(Millar, 2016; Creux and Harmer, 2019). Circadian regulation allows organisms to anticipate 71 

the predictable, day-night transitions of the diel cycle, complementing the responses to faster 72 

changes in light levels (Troein et al., 2011). Mehta et al. (2021) refer to these as 73 

‘anticipatory’ and ‘reactive’ regulation. At the macromolecular level, the transcriptomes in 74 

the green lineage show widespread and overlapping regulation of mRNA abundance by both 75 

light and circadian signals (see below), whereas the diel regulation of proteins and their post-76 

translational modifications had been less studied (Mehta et al., 2021). We addressed that gap 77 

using a minimal biological system, focussing on protein phosphorylation.  78 

 79 

Phosphorylation of an existing protein is energetically inexpensive, occurs rapidly and can 80 

then alter protein activity through conformational change or intermolecular recognition 81 

(Khoury et al., 2011). These characteristics seem fitted to reactive regulation. Some plant 82 

photoreceptor proteins include protein kinases that initiate light signalling (Christie, 2007; 83 

Djouani-Tahri el et al., 2011a).  84 

 85 

Protein synthesis is not only far slower but also among the costliest macromolecular 86 

processes (Scott et al., 2010; Karr et al., 2012), seemingly more suited to anticipatory 87 

regulation. Rhythmic regulation might then provide a selective advantage, loosely 88 

summarised as making proteins when they are needed in the diel cycle (Laloum and 89 

Robinson-Rechavi, 2022). That reasoning helped to interpret the co-regulation of functional 90 

clusters of RNAs, when transcriptome studies demonstrated that over 50% of Arabidopsis 91 

RNAs can be rhythmic under diel, light-dark cycles (LD) (Smith et al., 2004; Blasing et al., 92 

2005; Michael et al., 2008). Most strikingly, almost the whole transcriptome of the marine 93 

unicellular alga Ostreococcus tauri was rhythmic in controlled conditions (Monnier et al., 94 

2010) and this was also the most rhythmic taxon among the diverse plankton of a Pacific 95 

timeseries (Kolody et al., 2019). The clock might also allow anticipation, to ensure that the 96 

proteins had been fully synthesised and assembled to their active state by the appropriate 97 

time.  98 
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 99 

Proteomic data, in contrast, revealed that detected proteins had stable levels, with an average 100 

half-life >6 days in the model plant Arabidopsis thaliana (Li et al., 2017), suggesting little 101 

scope for diel rhythmicity. Timeseries under constant light or a diel cycle found up to 6% of 102 

rhythmic proteins (Baerenfaller et al., 2012, 2015; Choudhary et al., 2016; Uhrig et al., 2021; 103 

Krahmer et al., 2022). The shortest-lived, regulatory proteins are harder to detect, but such 104 

proteins seem to be exceptions to the general protein stability, consistent with mammalian 105 

systems (Doherty et al., 2009). Global regulation of protein synthesis is also clearly relevant 106 

in plants and algae (Piques et al., 2009; Juntawong and Bailey-Serres, 2012; Pal et al., 2013; 107 

Missra et al., 2015; Ishihara et al., 2015). In this context, circadian RNA regulation was 108 

proposed to offer a selective advantage through seasonal adaptation to day-length on a 109 

timescale of weeks (Seaton et al., 2018).  110 

 111 

More protein phosphorylation sites change over the diel cycle, compared to protein levels 112 

(Kusakina and Dodd, 2012; Mehta et al., 2021). Protein phosphorylation in plants and algae 113 

is most directly light-regulated by the photoreceptor kinases (Christie, 2007; Djouani-Tahri el 114 

et al., 2011a), though light also affects the broader phosphoproteome (Turkina et al., 2006; 115 

Boex-Fontvieille et al., 2014; Schönberg et al., 2017), for example affecting 25% of 116 

Arabidopsis phosphopeptides within 30 minutes (Uhrig et al., 2021). Circadian studies in 117 

Arabidopsis under constant light found up to 23% rhythmic phosphopeptides (Choudhary et 118 

al., 2015; Krahmer et al., 2022). These studies suggest that light responses and the circadian 119 

clock in Arabidopsis each control five- to ten-fold more phosphopeptides than the diel 120 

rhythm of total protein level, so it is also important to understand which phospho-regulators 121 

mediate these effects.  122 

 123 

The amino acid sequences of rhythmically-regulated phosphosites have implicated a range of 124 

protein kinases with overlapping contributions in Arabidopsis (Choudhary et al., 2015; Uhrig 125 

et al., 2021; Krahmer et al., 2022). However, ~1000 protein kinases shape the 126 

phosphoproteome in Arabidopsis (Champion et al., 2004) including several in plastids 127 

(Baginsky and Gruissem, 2009), compared to half that number in the human genome 128 

(Manning et al., 2002). Of particular interest, the casein kinases (CK1, CK2) and Glycogen 129 

Synthase Kinase 3 (GSK3), affect the circadian timing of all organisms suitably studied 130 

(Mehra et al., 2009). These kinases have central positions in the yeast kinase-target network 131 

(Breitkreutz et al., 2010) and are highly conserved (Hindle et al., 2014), in contrast to 132 
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photoreceptor proteins or circadian transcription factors (Noordally and Millar, 2015; Dunlap 133 

and Loros, 2017).  134 

 135 

Here, we compare the prevalence of proteomic and phosphoproteomic regulation under LD 136 

cycles, using O. tauri as a minimal model for the green lineage (Noordally and Millar, 2015). 137 

This alga not only has a ubiquitously-rhythmic transcriptome, but its genome is also reduced 138 

to 13Mbp (Blanc-Mathieu et al., 2014), likely due to selection pressure to reduce cell size to 139 

1-2µm (Courties et al., 1994). Its 7699 protein-coding genes include just 133 protein kinases 140 

that represent the core families for eukaryotic signalling (Hindle et al., 2014) and a minimal 141 

set of Arabidopsis clock gene homologues (Corellou et al., 2009; Djouani-Tahri el et al., 142 

2011b; Troein et al., 2011; Ocone et al., 2013). CK1 and CK2 modulate circadian timing in 143 

the light, with widespread effects on the algal phosphoproteome (Le Bihan et al., 2011, 2015; 144 

van Ooijen et al., 2013). A non-transcriptional, 24-hour oscillator of unknown mechanism 145 

was also revealed under prolonged darkness, when transcription stops in this organism 146 

(O’Neill et al., 2011; van Ooijen et al., 2011; Edgar et al., 2012; Bouget et al., 2014; Feeney 147 

et al., 2016). In cyanobacteria, the non-transcriptional clock is driven by rhythmic protein 148 

phosphorylation, so rhythmic protein kinase activities could also be relevant in O. tauri (van 149 

Ooijen and Millar, 2012; Wong and O’Neill, 2018).  150 

 151 

Our results reveal widespread daily rhythms in both the proteome and phosphoproteome in O. 152 

tauri, including expected features such as the diel control of conserved, cell cycle phospho-153 

regulators. Rather than the rapid phosphorylation responses and slow, rhythmic anticipation 154 

in protein profiles that might be expected, however, much of the rhythmic phosphoproteome 155 

anticipates dawn, whereas the level of many rhythmic proteins appears light-responsive. The 156 

phosphosite sequences strongly implicate phase-specific protein kinase classes. Moreover, we 157 

identify a set of rhythmic, algal-specific proteins that accumulate in prolonged darkness and 158 

were also identified in conditions that promote the formation of lipid droplets. 159 

Materials and Methods 160 

Materials 161 

Chemicals were purchased from Sigma-Aldrich (now a subsidiary of Merck Life Science UK 162 

Ltd, Dorset, UK) unless otherwise stated. Main solvent, acetonitrile and water for liquid 163 

chromatography– dual mass spectrometry (LC-MSMS) and sample preparation were HPLC 164 
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quality (Thermo Fisher Scientific, Loughborough, UK). Formic acid was Suprapure 98-100% 165 

(Merck) and trifluoroacetic acid (TFA) was 99% purity sequencing grade. Porcine trypsin 166 

TPCK treated was from Worthington (Lorne Laboratories, Reading, UK). All HPLC-MS 167 

connectors and fittings were from Upchurch Scientific (Hichrom, Theale, UK) or Valco 168 

(RESTEK, High Wycombe, UK). % are expressed in v/v. 169 

 170 

O. tauri media and culturing 171 

Ostreococcus tauri OTTH95 were cultured as previously described (van Ooijen et al., 2012), 172 

supplemented with 0.22 μm filtered 50 µg ml-1 ampicillin, neomycin and kanamycin 173 

antibiotics in vented tissue culture flasks (Sarstedt, Leicester, UK). Cultures were maintained 174 

by splitting weekly at 1:50 dilution. In preparation for proteomics experiments, cultures were 175 

grown in growth media supplemented with 200 mM sorbitol and 0.4% glycerol for seven 176 

days prior to the start of harvesting (O’Neill et al., 2011). Cells were cultured under cycles of 177 

12 hour light/ 12 hour dark (LD) at 20°C in a controlled environment chamber (MLR-350, 178 

Sanyo Gallenkamp, Loughborough, UK) at a light intensity of 17.5 μEm-2 s−1 white 179 

fluorescent light filtered by 724 Ocean Blue filter (LEE Filters Worldwide, Andover, UK). 180 

 181 

O. tauri cell harvesting 182 

Cells were grown for 7 days in LD and on the seventh day, five replicate cultures were 183 

harvested per timepoint, at Zeitgeber Times (ZT) 0, 4, 8, 12, 16 and 20, where ZT0 184 

corresponds to dawn. At ZT0 cells were harvested a few minutes before the lights went on 185 

and at ZT12, before the lights went off. 135 ml culture was harvested by centrifugation (4000 186 

rpm, 10 min, 4°C) per sample replicate, each from a separate culture vessel. Pellets were 187 

resuspended in ice cold phosphate buffered saline solution (PBS). Cultures were centrifuged 188 

as before, pellets were air dried and then vortex-mixed in 250 µl 8M urea and stored at -80°C. 189 

For total cell lysate, cells were dissolved by sonication (Branson Ultrasonics) and diluted 190 

with 500 µl dH2O. 191 

Cells were grown for 7 days in LD and on the eighth day the Dark Adaptation (DA) 192 

experiment cell harvests were performed at ZT24, 48, 72 and 96 in constant darkness with 193 

five replications. The samples were harvested and prepared as for the LD experiment. 194 

 195 
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Protein digestion 196 

Samples were analysed by Bradford Assay (Bio-Rad, Watford, UK) and 400 µg protein of 197 

each sample was used in the digestion. Samples were reduced in 10 mM dithiothreitol and 50 198 

mM ammonium bicarbonate, and alkylated with 25 mM iodoacetamide. Samples were 199 

digested overnight with 10 µg (1:40 ratio) trypsin under agitation at room temperature at pH8 200 

in a total volume of 1 ml. Samples were cleaned on SPE BondElut 25 mg columns (Agilent 201 

Technologies, Stockport, UK) following the vendor instruction.  50 µl (~20 µg) was removed 202 

and dried for LC-MS (Speedvac, Thermo Fisher Scientific). The remaining ~380 µg were 203 

also dried in preparation for phosphopeptide enrichment, and stored at -20°C. 204 

 205 

Phosphopeptide enrichment 206 

Dried peptide samples (~380 µg) were sonicated in 50 µl solution 0 (2.5% acetonitrile, 0.5% 207 

TFA) and 100 µl solution 2 (80% acetonitrile, 0.5% TFA, 100% lactic acid). Titansphere 208 

Phos-TiO Kit spin tip-columns (GL Sciences, Tokyo, Japan) were washed with 40 µl solution 209 

1 (80% acetonitrile, 0.5% TFA). Samples were loaded on the spin tip-columns and passaged 210 

three times through a centrifuge; 5 min at 200 xg, 15 min incubation at room temperature and 211 

10 min at 200 xg. Spin tip-columns were subsequently washed once with solution 1, twice 212 

with solution 2 and twice with solution 1for 2 min at 200x g. Phosphopeptides were eluted in 213 

two steps, first with 50 µl 5% ammonium hydroxide (5 min at 200 xg) and secondly, with 5% 214 

pyrrolidine solution. 20 µl 20% formic acid was added to lower the pH and samples were 215 

cleaned on Bond Elut OMIX C18 pipette tips (Agilent Technologies) following the 216 

manufacturer’s instruction. 217 

 218 

Protein and phosphoprotein quantification 219 

15 µg protein from total O. tauri cell lysates were run on a Novex NuPAGE 4-12% Bis-Tris 220 

by SDS-PAGE with PeppermintStick Phosphoprotein Molecular Weight Standards and 221 

Spectra Multicolor Broad Range Protein Ladder (Thermo Fisher Scientific). The gel was 222 

fixed overnight (50% methanol, 40% ddH2O, 10% glacial acetic acid), washed in ddH2O and 223 

stained with Pro-Q Diamond Phosphoprotein Gel Stain (Invitrogen, now Thermo Fisher 224 

Scientific, Loughborough, UK) in the dark at 25°C following manufacturer’s instructions. 225 

The gel was imaged on a Typhoon TRIO variable mode imager (GE Healthcare, Amersham, 226 

UK) at 532 nm excitation/ 580 nm emission, 450 PMT and 50 micron resolution. Images 227 

were processed using ImageQuant TL software (GE Healthcare, Amersham, UK). The gel 228 
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was re-used for protein quantification using SYPRO Ruby Protein Gel Stain (Themo Fisher 229 

Scientific, Loughborough, UK) following manufacturer’s instructions and imaged using a UV 230 

transilluminator (Ultra-Violet Products Ltd, Cambridge UK). Protein and phosphoprotein 231 

bands were quantified using Image Studio Lite v 4.0 (LI-COR Biosciences, Cambridge, UK). 232 

 233 

Protein per cell quantification 234 

Cells were grown (as described above) and independent, triplicate cultures were harvested at 235 

the times indicated. Cultures were monitored using spectrophotometry at 600nm. Total 236 

protein was quantified using the Quick Start Bradford Assay following manufacturer 237 

instructions (Bio-Rad, Watford, UK). Cell number was estimated either by counting four 238 

fields of view per culture in a haemocytometer after trypan blue staining (Abcam protocols, 239 

Cambridge, UK), or by fluorescence-activated cell sorting (FACS). For FACS, a 1/200 240 

dilution of cells were transferred to fresh media containing 1X SYBR Green I Nucleic Acid 241 

Gel Stain (Invitrogen, now Theremo Fisher Scientific, Loughborough,UK) and FACS-242 

counted (FACScan, BD Bioscience, Wokingham, UK) at a flow rate of 60μl per minute. 243 

 244 

qPCR for transcriptional regulation during dark adaptation (DA) 245 

Cells were cultured and harvested in the same experimental regime (described above) and 246 

harvested in biological triplicate at the times indicated for the LD and DA experiments. Total 247 

RNA was extracted from frozen cells using an RNeasy Plant Mini Kit and DNase treated 248 

(QIAGEN, Manchester, UK). First-strand cDNA was synthesised using 1 µg RNA and 500 249 

ng µl-1 Oligo(dT)15 primer (Promega, Southampton, UK), denatured at 65°C for 5 min, and 250 

reverse transcribed using SuperScript II (Invitrogen, now Theremo Fisher Scientific, 251 

Loughborough, UK) at 42 °C for 50 min and 70 °C for 10 min. 1/100 cDNA dilutions were 252 

analysed using a LightCycler®480 and LightCycler®480 SYBR Green I Master (Roche, 253 

Welwyn Garden City, UK) following manufacturer’s instructions and cycling conditions of 254 

pre-incubation 95°C for 5 min; 45x amplification cycles of 95°C for 10 s, 60°C for 10 s, 255 

72°C for 10 s. The following 5’ to 3’ forward (F) and reverse (R) primers to O. tauri gene 256 

loci were used: ostta01g01560 GTTGCCATCAACGGTTTCGG (F), 257 

GATTGGTTCACGCACACGAC (R); ostta03g00220 AAGGCTGGTTTGGCACAGAT (F), 258 

GCGCTTGCTCGACGTTAAC (R); ostta03g04500 GCCGCGGAAGATTCTTTCAAG (F), 259 

TCATCCGCCGTGATGTTGTG (R); ostta04g02740 ATCACCTGAACGATCGTGCG (F), 260 

CCGACTTACCCTCCTTAAGCG (R); ostta10g02780 GGCGTTCTTGGAATCTCTCGT 261 
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(F), TATCGTCGATGATCCCGCCC (R); ostta10g03200 GGTACGGAGGAAGAAGTGGC 262 

(F), ATGTCCATGAGCTTCGGCAA (R); ostta14g00065 GACAGCCGGTGGATCAGAAG 263 

(F), TCGAGGTAGCTCGGGAGATC (R); ostta16g01620 ACGGGTTGCAGCTCATCTAC 264 

(F), CCGCTTGGGTCCAGTACTTC (R); ostta18g01250 CTTGCAAATGTCCACGACGG 265 

(F), ATGATGTGGCACGTCTCACC (R); OtCpg00010 ACATGACTCACGCGCCTTTA 266 

(F), TGCCAAAGGTGCCCTACAAA (R). Primers to eukaryotic translation 267 

elongation/initiation factor (EF1a) ostta04g05410 GACGCGACGGTGGATCAA (F) and 268 

CGACTGCCATCGTTTTACC (R) were used as an endogenous control. This transcript is 269 

among the least-varying 1% of the transcriptome tested by RNAseq under LD cycle 270 

conditions (Derelle et al., 2018). Data were combined for biological and two technical 271 

replicates and relative quantification performed using LightCycler®480 1.5 software (Roche).  272 

 273 

HPLC–MS analysis 274 

Micro-HPLC-MS/MS analyses were performed using an on-line system consisting of a 275 

micro-pump 1200 binary HPLC system (Agilent Technologies) coupled to an hybrid LTQ-276 

Orbitrap XL instrument (Thermo Fisher Scientific). The complete method has been described 277 

previously (Le Bihan et al., 2010). For all measurements, 8µl of sample was injected using a 278 

micro-WPS auto sampler (Agilent Technologies) at 5µl /min. After sample loading, the flow 279 

rate across the column was reduced to approximately 100-200 nl/min using a vented column 280 

arrangement.  Samples were analysed on a 140 min gradient for data dependant analysis.   281 

 282 

HPLC-MS data analysis 283 

To generate files compatible with public access databases PRIDE (Vizcaino et al., 2016) and 284 

the former pep2pro (Hirsch-Hoffmann et al., 2012), Mascot Generic Format (MGF) input 285 

files were generated using MSConvert from ProteoWizard (Kessner et al., 2008). MSMS data 286 

was searched using MASCOT version 2.4 (Matrix Science Ltd, London, UK) against the O. 287 

tauri subset of the NCBI protein database (10114 sequences from NCBI version 2014 June 288 

6th including common contaminants) using a maximum missed-cut value of 2, variable 289 

oxidation (M), N-terminal protein acetylation, phosphorylation (STY) and fixed 290 

carbamidomethylation (C); precursor mass tolerance was 7 ppm and MSMS tolerance 0.4 291 

amu. The significance threshold (p) was set below 0.05 (MudPIT scoring). Global FDR was 292 

evaluated using decoy database search and removal of peptides ranked higher than 1 for a 293 

mascot score above 20 (~1% global FDR). Mass spectrometry proteomics data have been 294 
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deposited in PRIDE ProteomeXchange Consortium (Vizcaino et al., 2014) via the PRIDE 295 

partner repository with the dataset identifier LD global proteomics, PXD001735; LD 296 

phosphoproteomics, PXD001734; DA global proteomics, PXD002909. Data was converted 297 

into PRIDEXML using Pride converter 2.0.20 and submitted using proteome exchange tool 298 

pxsubmission tool 2.0.1. The LC-MS data were also publicly available in the former pep2pro 299 

database (Assemblies 'Ostreococcus tauri Light:dark cycle,LD global', 'Ostreococcus tauri 300 

Light:dark cycle,LD phospho', and 'Ostreococcus tauri dark adaptation,DA global'). 301 

Label-free quantification was performed using Progenesis version 4.1 (Nonlinear Dynamics, 302 

Newcastle, UK). Only MS peaks with a charge of 2+, 3+ or 4+ and the five most intense 303 

spectra within each feature were included in the analysis. Peptide abundances were mean-304 

normalised and ArcSinH transformed to generate normal datasets. Within-group means were 305 

calculated to determine fold changes. Neutral losses of phosphoric acid typical of serine and 306 

threonine phosphorylated were validated manually in all significantly differential 307 

phosphopeptides. Ambiguous sites were confirmed by cross-referencing (by sequence, 308 

charge, and quantity of residue modifications) with most probable site predictions from 309 

MaxQuant version 1.0.13.8 (Cox and Mann, 2008) in singlet mode, Mascot settings as above. 310 

Where multiple occurrences of residue phosphorylation events were quantified, abundances 311 

were summed, collating all charge states, missed cuts and further modifications. 312 

 313 

Data analysis 314 

Merging 315 

For accurate and unique phosphopeptide quantification we addressed variant redundancy at 316 

different charge states, alternative modifications (e.g. oxidation and acetylation) and multiple 317 

sites of protease digestion. All unique phosphorylation events were retained, including 318 

multiple phosphorylation, at a given amino acid motif, while summing the quantification of 319 

these technical variants. The qpMerge (http://sourceforge.net/projects/ppmerge/) software 320 

was used to combine Progenesis and MaxQuant phospho-site predictions and produce a 321 

unique set of quantified phosphopeptide motifs (Hindle et al., 2016, Preprint). 322 

Outlier identification and removal 323 

To detect outliers we first applied principal component analysis (PCA) to all the replicates 324 

and then calculated the Pearson correlation of each replicate’s data to the median abundance 325 

values from all 5 replicates at that timepoint. A single phosphoproteomic replicate, 4E, was 326 
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excluded based on substantial differences in peptide quantification that led to r2 < 0.8 327 

(Supplementary Figures S1D). 328 

P-value calculation and false discovery rate (FDR) 329 

For analysing the significance of changing protein and peptide abundance over time, non-330 

linear response of expression using polynomial regression was modelled using the R Stats 331 

Package. A third order polynomial was fitted, testing for an expected peak and trough within 332 

a 24 h daily cycle against the variation among replicates. This approach avoided the manual 333 

removal of continually-rising or -falling traces, which was previously required when 334 

JTKcycle was used to score rhythmicity within a single cycle of data (Krahmer et al., 2022). 335 

An arcsinh transformation of abundance was applied to meet the required assumption of 336 

normality (Burbidge et al., 1988). FDR was calculated using the Benjamini and Hochberg 337 

(BH) method (Benjamini and Hochberg, 1995). More than 2 quantifying peptides were 338 

required to report protein abundance. 339 

Equivalence testing 340 

Using the R equivalence package, the statistical equivalence of mean abundance across time 341 

was tested as the highest p-value from exhaustive pairwise Two one-sided test approach 342 

(TOST) tests over all ZTs (Schuirmann, 1981; Westlake, 1981). We tested whether 343 

abundances had upper and lower differences of less than 0.3 within the equivalence margin 344 

(ε). 345 

O. tauri gene identifiers 346 

O. tauri genome version 1 gene IDs (Derelle et al., 2006) for microarray data were converted 347 

to version 2 IDs (Blanc-Mathieu et al., 2014) by finding exact sequence matches for the 348 

microarray probes (Accession GPL8644) (Monnier et al., 2010) in the version 2 FASTA 349 

coding sequence file.  350 

Principal component analysis (PCA) 351 

PCA was used to investigate the main components of variation in the data using prcomp from 352 

the R Stats Package. The abundances were zero-centred per-feature. The PCA loading values 353 

for each feature were extracted and then used for Gene Ontology (GO) enrichment analysis.  354 

Clustering 355 

Hierarchical clustering was performed with hclust from the R Stats Package and applied on 356 

all per-feature (protein or phosphopeptide motif) mean abundances over time, which were 357 

zero-centred and scaled. Pearson’s correlation was used to calculate distance matrix and the 358 

Ward method (Ward, 1963) for linkage criteria. The hierarchical tree was divided into 359 
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clusters using the dynamicTreeCut algorithm (Langfelder et al., 2008). The hybrid cut tree 360 

method with a cut height of 100 and a minimum cluster size of 20 was used for both datasets.  361 

Enrichment analysis for GO terms 362 

TopGO was used to evaluate the enrichment of GO terms, for each ontology aspect, within 363 

clusters, peaks, troughs, and principal components. The peak (or trough) time is the timepoint 364 

with the maximum (minimum) mean level in the experiment. For clusters, peaks and troughs 365 

a Fisher’s exact test was used by partitioning at 95% confidence on FDR corrected p-values, 366 

and with a fold change >1.5 in normalised abundance. For each test, we use a relevant 367 

background of non-significant observed features. For principal components (PCs), variable 368 

loadings quantify how much each protein/PM contributes to (or weights) the variance 369 

captured by the PC. GO enrichment using these variable loadings tests for terms that are 370 

statistically overrepresented among the proteins/PMs with higher loading in the PC. To test 371 

for enrichment of GO terms for each PCA the Kolmogorov-Smirnov test was applied over the 372 

absolute PCA loading values for each gene. GO terms were predicted by InterProScan 5 373 

(Jones et al., 2014) on amino acids sequences for O. tauri coding sequences (NCBI version 374 

140606 (Blanc-Mathieu et al., 2014)). 375 

Homology modelling 376 

Structural homology models were generated using I-TASSER (Yang and Zhang, 2015) for 377 

prasinophyte-family specific proteins of unknown structure and function, including for 378 

ostta02g03680 compared to the human Bar-domain protein structure in PDB entry with DOI 379 

10.2210/pdb2d4c/pdb. Other suggested homologies were more limited. 380 

pLOGO and binomial statistics 381 

Significantly over- and under-represented amino acid residues at different time-points were 382 

calculated using the binomial based pLogo tool (O’Shea et al., 2013). The Motif-X tool 383 

(Chou and Schwartz, 2011) was used to discover novel motifs in the dataset. Binomial 384 

statistics were applied to calculate the enrichment of motifs and the combined probabilities of 385 

amino acids with similar properties in a phospho-motif (e.g. the acidic D/E positions in the 386 

CK2 motif).  387 

Kinase target prediction 388 

Computational prediction of protein kinase motifs associated with the identified 389 

phosphorylation sites was performed using Group-based Prediction System, GPS Version 3.0 390 

(http://gps.biocuckoo.org/index.php) (Xue et al., 2011). 391 
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O. tauri loci IDs mapping to A. thaliana loci IDs 392 

O. tauri and A. thaliana IDs were mapped using EggNOG4.1 (http://eggnogdb.embl.de). O. 393 

tauri proteins were downloaded from 394 

https://bioinformatics.psb.ugent.be/gdb/ostreococcusV2/LATEST/OsttaV2_PROT_20140522395 

.fasta.gz (May 22nd, 2014). Viridiplantae (virNOG) hmms and their descriptions and 396 

annotations were transferred to O. tauri proteins using hmmr 3.1 (http://hmmer.janelia.org) 397 

 398 

Mathematical simulations 399 

Simulated protein rhythms 400 

Protein dynamics (P(t)) were simulated according to the following model: 401 

�����
�� � ��	��� 
 1� � 1����� 
 	������� 

Where L(t) = 1 during the day (ZT <=12), and 0 otherwise. The rate of protein degradation 402 

(kdeg) was set to 0.1 h-1, and the ratio of protein synthesis in the light compared to the dark 403 

(ksyn) was set to 4, based on (Martin et al., 2012), for all the simulated proteins. We note that 404 

protein turnover could also be modelled to include a varying rate of dilution. However, this 405 

effect is small relative to the degradation rate modelled here (average dilution across a 24 h 406 

period of 0.01 h-1, with variation of this rate across the period being less than this). The 407 

rhythmically expressed mRNA levels (m(t)) are given by: 408 

���� � cos�2��� 
 ��
24 � � 1 

The peak phase of expression is given by φ. To obtain the distributions of peak and trough 409 

protein levels, the peak phases (φ) of mRNA expression were uniformly distributed at 0.1 h 410 

intervals across the range [0,24]. For each phase of mRNA expression, the timing of peak and 411 

trough protein levels was determined by simulating the model dynamics in MATLAB using 412 

the ode15s ODE solver. The peaks and troughs were identified across a 24 h period, 413 

following 240 h simulation to allow the dynamics to reach a steady behaviour (i.e. with the 414 

same protein levels at ZT0 and ZT24). 415 

Protein degradation rates and depletion during dark adaptation 416 

Degradation rates were calculated from published proteomics data (Martin et al., 2012), 417 

which characterised the dynamics of partial 15N isotope incorporation. We assumed a 418 

labelling efficiency of 0.93 (=maximum labelled fraction achieved of any protein + 0.01), and 419 

fitted a simple kinetic model assuming: (1) constant labelling efficiency over time; (2) 420 

different proteins are labelled at the same efficiency; (3) heavy and light fractions are turned 421 
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over at equal rates, similar to (Seaton et al., 2018). In calculating the correlation of the 422 

resulting degradation rates with fold-change under dark adaptation (Figure 3C), we 423 

considered potential outliers. One protein (ostta02g04360) with a high degradation rate 424 

(~0.03 h-1) and fold-change (~0.5) was excluded as an outlier, as including this single protein 425 

significantly increased the degree of anti-correlation (Pearson’s correlation coefficient 426 

changed from r= -0.48 to -0.7 when included). The two proteins with the next-highest fold-427 

changes (~0.6, ostta10g03200 and ostta14g02420) were retained; excluding these proteins 428 

also would change the correlation to r = -0.39, which would remain significant (p = 0.02). 429 

 430 

Results 431 

 432 

To understand the landscape of protein abundance and phosphorylation across the diel cycle, 433 

we harvested quintuplicate biological samples of O. tauri at six timepoints across a 12 h 434 

light/12 h dark (LD) cycle. Dawn samples (zeitgeber time 0, ZT0) were harvested just before 435 

lights-on, and samples at ZT12 before lights-off, to detect biological regulation that 436 

anticipated these transitions. The proteome and phosphoproteome were measured in whole-437 

cell extracts from each sample, by label-free, liquid chromatography–mass spectrometry 438 

(Figure 1A). 855 proteins were quantified with 2 or more peptides (Supplementary Table S1). 439 

Phosphopeptides were enriched by metal-affinity chromatography prior to detection. For 440 

quantification, we combined the phosphopeptide species that shared phosphorylation on a 441 

particular amino acid, irrespective of other modifications (Hindle et al., 2016, Preprint). We 442 

refer to this set of phosphorylated species as a phosphopeptide motif (PM). After removing a 443 

technical outlier (Supplementary Figure S1), 1472 phosphopeptide motifs were quantified, 444 

from 860 proteins (Supplementary Table S2). Serine and threonine residues were modified 445 

most; only 1% of PMs included phospho-tyrosine. The quantified proteins and 446 

phosphoproteins each represent ~11% of the total O. tauri proteome (Figure 1B). 29 out of 61 447 

proteins encoded on the chloroplast genome (Robbens et al., 2007) were quantified, with 6 448 

PMs. 3 out of 43 mitochondrial-encoded proteins were quantified with no PMs, consistent 449 

with other studies (Ito et al., 2009). 450 

 451 
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Diel rhythmicity of the transcriptome, proteome and phosphoproteome 452 

To compare the patterns and prevalence of daily rhythms at different regulatory levels, we re-453 

analysed published transcriptome data in parallel with these protein and phosphoprotein data, 454 

summarised in Figure 1C. Gene expression in O. tauri was strongly rhythmic under LD 455 

cycles, with 89% of transcripts scored rhythmic, as previously reported (Monnier et al., 456 

2010). 85 (9.5%) of the detected proteins were significantly rhythmic by polynomial 457 

regression (see Methods) and changed by at least 1.5-fold, with only 11 of these proteins 458 

changing level by more than 5-fold.  In contrast, 66% of phosphoproteins or 58% of PMs 459 

(570 of 860 proteins; 850 of 1472 PMs) were rhythmic by these criteria and the levels of 35 460 

PMs changed more than 20-fold. These results show more rhythmicity in the levels of 461 

detected RNAs and PMs than in protein levels. Understanding how a specific gene of interest 462 

was regulated, however, was hampered by the fact that only 110 genes were quantified in all 463 

three datasets (Figure 1C).  464 

 465 

Protein levels nonetheless changed smoothly, with distinct waveforms. Of the twenty most 466 

highly-detected proteins, likely including the most abundant, 11 were significantly rhythmic 467 

but with low amplitudes (Supplementary Figure S2A), such that only ostta10g03200 468 

exceeded the 1.5-fold change threshold (Table S1). 15 of the twenty most highly-detected 469 

PMs, in contrast, were rhythmic by both criteria (Supplementary Figure S2B). The more 470 

stringent, “equivalence” test revealed 49 proteins with significantly non-changing protein 471 

abundance but with significantly changing transcript and PMs, illustrated by the 10-fold 472 

change in PM abundance on the non-changing chlorophyll-binding protein CP26, amongst 473 

others (Supplementary Figure S3).  474 

 475 

Contrasting patterns of regulation 476 

To identify the dominant patterns of regulation (anticipatory, reactive or otherwise), we 477 

applied undirected principal component (PC) analysis to the mean level of each RNA, protein 478 

or PM at each timepoint (Figure 1D-1I). The PC analysis represented most (83-86%) of the 479 

variance in each data set but indicated a differing balance of molecular regulation between 480 

them. The transcriptome and phosphoproteome data clearly separated between dawn and 481 

dusk timepoints in PC1, and between the light and dark intervals in the secondary PC2. That 482 

separation also mapped the contributions of the 13 transcriptome and 6 phosphoproteome 483 

timepoints, each indicated by an arrow on the figure panels, into their respective, temporal 484 
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sequences, as expected if smoothly-changing timeseries are prominent in the data. The lesser 485 

contributions from PC3 separated some adjacent timepoints such as ZT0/24 from ZT3 in the 486 

RNA, and ZT16 from ZT20 in the PMs, indicating contrasting profiles between these 487 

timepoints, but PC3 results were otherwise harder to interpret. The PCA results for RNA and 488 

PM molecular profiles suggested anticipatory rather than responsive regulation, because the 489 

strongest effects (in PC1) corresponded to time of day, not the light/dark condition of each 490 

sample. 491 

  492 

The relatively few rhythmic proteins, in contrast, showed evidence of reactive not 493 

anticipatorv regulation. The major separation (in PC1) was between samples from light and 494 

dark intervals (Figure 1F, 1G). The early day (ZT4) was separated most strongly from early- 495 

to mid-night (ZT16 and 20). The lower contribution of PC2 separated the late night (ZT0) 496 

from the late day (ZT8-12). PC3 was not easily interpretable, though it accounted for 20% of 497 

the variance, likely reflecting the low amplitude of the protein regulation observed. 498 

 499 

Clustering (Figure 1D-1I, Supplementary Figure S4) and analysis of peak distributions 500 

(Figure 2A-C) informed more detailed hypotheses on upstream regulation and downstream, 501 

functional effects. Hierarchical clustering grouped the protein and PM abundance profiles 502 

into 8 clusters (termed P1–P8 and PM1–PM8, respectively; Supplementary Figure S4A, 503 

S4B). The consistency among the analysis methods is illustrated in Figures 1D-1I. The 504 

coordinates of RNAs or PMs in the PCA plots aligns with their separation into distinct 505 

clusters, represented by the colour of each RNA or PM’s marker, and with particular 506 

timepoints. For example, the PM profiles with large positive values in PC1 (Figure 1H) also 507 

correspond to the contributions of the pre-dawn timepoint ZT0 (indicated by the arrow, 508 

Figure 1H) and to membership of cluster PM1 (red markers, as in Supplementary Figure 509 

S4B). Clustering of the lower-amplitude, protein profiles did not align so clearly with the PC 510 

analysis (Figures 1F, 1G).  511 

 512 

GO term enrichment data for RNAs, proteins and PMs in the principal component, clustering 513 

and peak time analyses is presented in Supplementary Tables S3-S5, with examples for 514 

proteins and PMs in Supplementary Figure S4C,D and a summary in Supplementary Figure 515 

S5. Results for RNAs were similar to past analysis of these data (Monnier et al., 2010), as 516 

expected. The section ‘Functions of proteins with rhythmic phospho-motifs’ outlines the 517 

functional analysis of PMs. Among the rhythmic protein functions, proteins involved in the 518 
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TCA cycle and transport processes were enriched in PC2, aligned with the late night (ZT0). 519 

PC1 was notably enriched for translation-related protein functions, which had previously 520 

been highlighted in transcript profiles peaking after dawn (Monnier et al., 2010). Our next 521 

analysis suggested the functional effect of translational regulation. 522 

 523 

Daytime peaks of protein abundance  524 

We analysed the distribution of peak times among the rhythmic profiles (Figure 2) to 525 

understand the anticipatory or reactive regulation in more detail, starting with the proteins. 526 

Hundreds of transcripts reach peak abundance at every timepoint around the day/night cycle 527 

(Figure 2A) (Monnier et al., 2010). In contrast, most protein profiles peaked in the light 528 

interval (85% at ZT4-12; Figure 2B), separating the day and night samples in line with the 529 

PC analysis. Metabolic labelling of O. tauri has shown ~5-fold higher protein synthesis rates 530 

in the day compared to the night (Martin et al., 2012). Consistent with this, our analyses 531 

showed translation-related proteins were enriched among the rhythmic proteins with high 532 

abundance in the daytime, whether in PC1, protein cluster P1 or in profiles with daytime peak 533 

phase (Supplementary Tables S3-S5, Supplementary Figures S4, S5). We therefore tested 534 

whether this light-regulated synthesis alone could explain the observed distribution of protein 535 

peak times.  536 

 537 

We simulated protein dynamics (Figure 2D-2F; Supplementary Figure S6) using measured 538 

protein synthesis and degradation rates (Martin et al., 2012), and an even temporal 539 

distribution of peak times among a population of simulated, rhythmic mRNAs. Without light 540 

regulation, the translation of these rhythmic RNAs would result in a corresponding, even 541 

distribution of peak times across the day and night in the protein profiles also (black traces, 542 

Supplementary Figures S6A-S6C), with each protein profile following its cognate RNA. 543 

With the observed light regulation, however, the simulated distribution of protein profiles 544 

matched well to the high proportion of daytime peaks in our measured protein profiles 545 

(Figure 2E; Supplementary Figures S6D-S6G). The concentration of simulated protein peaks 546 

in daytime timepoints (97%, compared to 85% in the data) emphasises the strength of the 547 

translational effect. ostta03g04520 is an example of an RNA that peaks at ZT0 and its protein 548 

profile (Figure 2G) was very similar to the predicted protein from such an RNA (Figure 2D). 549 

Proteins in cluster P4 (Supplementary Figure S4A) might also reflect light-stimulated 550 

translation as they reach peak levels at ZT12, similar to the simulated example in Figure 2F. 551 
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The overall distribution of protein profiles substantially reflects the light-stimulated 552 

translation rate of this organism (see Discussion).  553 

 554 

Unusual, night-time proteins suggest a ‘dark state’ 555 

An intriguing pattern of protein regulation stood out from the daytime abundance of rhythmic 556 

proteins. Protein cluster P6 included the protein profiles that fell at ZT4 (Supplementary 557 

Figure S4A), associated with oxidative metabolism and protein transport GO terms 558 

(Supplementary Table S4). Four un-annotated proteins in cluster P6, with sequence 559 

homologues only among the prasinophyte group of green algae, not only peaked at night but 560 

were also among the 11, highest-amplitude profiles of all the rhythmic proteins (Figure 3A). 561 

Their dramatic fall in abundance at ZT4 suggested a destabilisation by light, so we tested 562 

whether such proteins would remain stable during several days of dark-adaptation (DA).  563 

 564 

O. tauri cells are photo-autotrophic. Their division is entrained by the LD cycle (Farinas et 565 

al., 2006) and they arrest transcription in prolonged darkness, when they can survive without 566 

growth or division if sorbitol and glycerol are provided in the medium (O’Neill et al., 2011). 567 

Cell density (optical density at 600nm) in our cultures increased by ~25% after one LD cycle. 568 

Cellular protein content was consistent (18-20 pg cell-1) in replicate measures at ZT0 and 569 

ZT24 (Figure 3B). In cultures transferred to three further days of darkness, optical density 570 

remained constant but protein content per cell dropped by over 60% on the first day (ZT24 to 571 

ZT48) and was then stable to ZT96. This result was suggestive of an altered, but potentially 572 

stable, cellular ‘dark state’, which we tested in a further, proteomic timeseries, sampling in 573 

darkness at ZT24, 48, 72 and 96.  574 

 575 

The proteomic landscape changed less during dark adaptation (DA) than under a standard LD 576 

cycle. 98 of the 865 proteins quantified by LC-MS changed levels more than the average and 577 

only 64 (7%) also changed more than 1.5-fold (Supplementary Table S6). The 35 578 

significantly-increasing proteins in DA included five transmembrane transporters, a Lon-579 

related protease and two superoxide dismutases, suggestive of nutrient acquisition, protein 580 

mobilisation and oxidative stress responses. The four prasinophyte-specific proteins noted 581 

above were among the ten most-increasing proteins in DA, confirming their unusual 582 

regulation and suggesting a shared function both at night-time in our LD conditions and in 583 

the putative ‘dark state’. The most-decreasing among 63 significantly-decreasing proteins in 584 
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DA was a starch synthase (ostta06g02940). Its abundance declined in the night under LD 585 

cycles, as did all 10 of the DA-decreasing proteins that were also rhythmic in LD. The largest 586 

functional group of depleted proteins comprised 22 cytosolic ribosomal proteins and 587 

translation factors (Supplementary Table S6), suggesting that O. tauri selectively mobilised 588 

this protein pool in darkness.  589 

 590 

The night-abundant, prasinophyte proteins that accumulated in DA, and night-depleted 591 

proteins that fell in DA (such as ostta06g02940, noted above, Supplementary Table S6; or 592 

PPDK ostta02g04360, Supplementary Figure S7C), suggested that prolonged darkness 593 

preserved a night-like state. An alternative explanation was that protein stability in general 594 

was altered in the putative dark state. We sought to test that notion, using the protein 595 

degradation rates that were previously measured by metabolic labelling in LD conditions 596 

(Martin et al., 2012). Falling protein abundance under DA was significantly correlated with 597 

higher degradation rates in LD (Figure 3C; r = -0.48, p=0.004, n=34), even among these 598 

abundant, stable proteins. We also tested RNA abundance for a subset of these proteins in 599 

DA by qRT-PCR, showing stable levels after one day of prolonged darkness (ZT48; 600 

Supplementary Figure S8A). The lack of RNA regulation seemed consistent with the lack of 601 

transcription in these conditions (O’Neill et al., 2011). For example, a further prasinophyte-602 

specific protein ostta03g4500 with a stable RNA level and slightly-increasing protein level in 603 

DA also had a low protein degradation rate in LD (Figure 3C), and was among the most-604 

detected proteins in these conditions (Supplementary Figures S2A, S8B). The RNA data and 605 

protein degradation rates suggested that the prasinophyte-specific proteins accumulated due 606 

to a focussed, regulatory mechanism, rather than generalised refactoring of the proteome.  607 

A preprint (Smallwood et al., 2018a, Preprint) coincident with our first report (Noordally et 608 

al., 2018, Preprint) showed that three of the night-expressed, prasinophyte-specific proteins 609 

accumulated strongly in O. tauri under LD cycles when the growth medium was depleted of 610 

nitrogen, particularly if carbon availability was also increased (ostta03g04500 accumulated 611 

most; ostta09g00670, third; ostta02g03680, fifth). The third most-depleted protein in their 612 

conditions was the same starch synthase (ostta06g02940) that fell most in abundance under 613 

our prolonged dark treatment. Smallwood et al. also showed that O. tauri forms both 614 

intracellular and extracellular lipid droplets under their conditions (Smallwood et al., 2018b, 615 

Preprint; 2018a, Preprint). It is possible that sorbitol and glycerol from our medium were 616 
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metabolised to lipids, and that the night-expressed proteins contributed to that process (see 617 

Discussion). 618 

A phospho-dawn of protein modification 619 

In contrast to the many daytime-peaking protein profiles, 39% of the changing 620 

phosphopeptide motifs (PMs) peaked in abundance at ZT0 (Figure 2C), double the proportion 621 

of any other timepoint. The ZT0 samples were harvested before lights-on, so this ‘phospho-622 

dawn’ anticipated the dark-light transition and did not reflect increasing protein levels due to 623 

light-stimulated translation. In contrast, Figure 2G shows examples of high-amplitude PM 624 

profiles that did track the levels of their cognate proteins, with little evidence of regulated 625 

phosphorylation. We therefore tested the contribution of protein levels to PM profiles more 626 

broadly, among the 138 genes that were quantified in both protein and PM datasets 627 

(Supplementary Figures S7A,B). This subset of 261 protein-PM pairings included proteins 628 

peaking at all timepoints, and PM profiles that reflected the peak time distribution of the full 629 

dataset. 80% of the PMs peaked at a different timepoint than their cognate protein 630 

(Supplementary Figure S7B; examples in Figure 2H). The LHC linker protein CP29 631 

(ostta01g04940) illustrates one pattern: its protein level rises in the light while a PM is de-632 

phosphorylated (Supplementary Figure S7C). This PM is located adjacent to a target site of 633 

chloroplast kinase STN7 in the homologous CP29 of Arabidopsis (Schönberg et al., 2017).  634 

To test the phospho-dawn pattern by a different method, we estimated the bulk protein 635 

phosphorylation across the diel cycle using protein gel staining (Supplementary Figures 636 

S9A,B). The proportion of phosphorylated proteins was lowest in the daytime and increased 637 

during the night to peak at ZT0 (Supplementary Figures S9C). The pattern of total 638 

phosphorylation estimated by this simpler analysis was therefore broadly consistent with the 639 

distribution of PM profiles (Figure 2C). Taken together, these results indicate that a regulator 640 

other than light or protein abundance controls the O. tauri phosphoproteome before dawn. 641 

Below, we report phosphosite sequences that suggested its identity. 642 

Functions of proteins with rhythmic phospho-motifs 643 

The LD datasets confirmed that protein phosphorylation profiles often diverged from protein 644 

abundance. The largest cluster PM1 reflected the profiles that peaked in the ZT0 timepoint 645 

(Supplementary Figure S4B), which also stood out in the PC analysis (Figure 1H). Cluster 646 

PM1 included 518 PMs on 395 proteins, and was enriched for GO terms related to 647 

transcription, glucose metabolism, K+ and protein transport and ubiquitin-dependent 648 
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proteolysis functions (similar to PC1 and ZT0-peaking profiles; Supplementary Tables S3-649 

S5). Phosphopeptide enrichment allowed the detection of regulatory proteins, including PMs 650 

on predicted CONSTANS-like B-box transcription factors (OtCOL) related to the plant clock 651 

protein TOC1 (Figure 4), and on the RWP-RK mating-type factor ostta02g04300 (Blanc-652 

Mathieu et al., 2017). PM1 also includes the predicted CK2 target site pS10 in the clock 653 

protein CCA1 (ostta06g02340; Figure 4), close to the homologous location of a CK2 site in 654 

Arabidopsis CCA1 (Lu et al., 2011).  655 

 656 

PMs in cluster PM3 peaked in the light, as expected if their profile was driven by light-657 

stimulated translation of the cognate protein (examples in Figure 2G). PMs on the 658 

photoreceptors phototropin and LOV-HK illustrate these daytime profiles (Figure 4). Protein 659 

functions predicted to regulate transcription, metal ion transport and protein phosphorylation 660 

are enriched in this cluster (summarised in Supplementary Figure S4D; Supplementary Table 661 

S4), in profiles with daytime peaks (Supplementary Figure S5B; Supplementary Table S5), 662 

and along with translation, in profiles contributing to PC2 (Supplementary Table S3).  663 

 664 

In contrast, the PM2, PM4, PM7 and PM8 clusters peaked at ZT16, with or without 665 

accumulation in daytime (Supplementary Figure S4B). These clusters are enriched for PMs 666 

on protein kinases including cell-cycle-related kinases (Supplementary Figures S4D, S5B; 667 

Supplementary Tables S4 and S5). PM profiles that contributed to PC2 with negative 668 

coefficients, related to ZT16 and ZT 20 timepoints (Figure 1H), were also enriched for 669 

mitosis GO terms, along with Ca2+ transmembrane transport (Supplementary Table S3). 670 

Consistent with this, terms for mitotic processes (DNA replication and repair) were enriched 671 

among dusk-expressed transcripts. We therefore analysed the phospho-regulators that might 672 

control these PM profiles, including potential contributions to non-transcriptional timing. 673 

 674 

Phase-specific target sites 675 

We first analysed motifs of amino acids that were enriched in rhythmic PMs, compared with 676 

all quantified phosphopeptides to avoid potential detection bias due to PM abundance. PMs 677 

that peaked at ZT16 were strikingly enriched for the proline-directed motif [pS/pT]P (Figure 678 

5B,C). This strongly implicates the CMGC family of protein kinases, including Cyclin-679 

Dependent Kinases (CDKs) and GSK. Consistent with this, the profiles of PMs with 680 

predicted GSK target sequences also most often peaked at ZT16 (Supplementary Figure 681 
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S10A). Levels of GSK3 RNA and a PM on GSK3 peaked at ZT12 (Figure 4), though the 682 

auto-phosphorylation site pY210 was not rhythmic (Supplementary Table S2). More specific 683 

CDK target motifs [pS/pT]PXX[K/R] were enriched at ZT12 (Figure 5B), consistent with the 684 

known timing of cell division (Farinas et al., 2006; Moulager et al., 2007) and the peak level 685 

of the activation phospho-site of CDKB (Figure 4, centre-right panel). During the day (ZT4 686 

and 8), enrichment of hydrophobic residues at positions -5 and +4 (Figure 5C) is suggestive 687 

of the SnRK consensus (Vlad et al., 2008), the plant kinase most related to animal AMPK.  688 

In contrast, acid([D/E])-directed target motifs were significantly enriched among the 689 

rhythmic PMs that peaked at ZT0 and the proline-directed motifs were depleted (Figure 5C). 690 

Conversely, these acid-directed motifs were depleted on PMs peaking at ZT16 or ZT4, 691 

suggesting a strong phase-specificity. Considering the more specific, predicted target sites for 692 

the clock-related protein kinases (Supplementary Figure S10A), more rhythmic PMs included 693 

predicted CK1 targets than CK2 or GSK3 targets, and the phosphorylation of CK1 targets 694 

most often peaked at ZT0. Predicted CK2 target sequences had even more phase-specific 695 

phosphorylation, with at least 5-fold more peaking at ZT0 than at other times (Supplementary 696 

Figure S10A). Thus predicted targets of the clock-related kinases CK1 and CK2 both 697 

contribute to the phospho-dawn profiles, in antiphase to the evening peaks of proline-directed 698 

phospho-sites.  699 

Rhythmic regulation of the kinome 700 

The protein abundance of the three detected protein kinases and two phosphatases was not 701 

rhythmic (Supplementary Table S1). We therefore analysed the 68 rhythmic PMs on protein 702 

kinases and five PMs on protein phosphatases, as candidate mediators of rhythmic 703 

phosphorylation (Figs. 5A, 5D). The PMs on kinases represent 8% of the total, though protein 704 

kinase genes comprise ~1.5% of the genome. Indeed, the most heavily-phosphorylated 705 

protein with 14 PMs was the WITH NO LYSINE (WNK) kinase that might target clock 706 

proteins in Arabidopsis (Murakami-Kojima et al., 2002)(Supplementary Table S2; 707 

Supplementary Figure S10C). The most-changing PM on a predicted protein phosphatase was 708 

pT175 in ostta11g02830, related to human Dual-specificity phosphatase DUSP12 (Figure 709 

5D). 710 

Among the clock-related protein kinases, we noted the dusk-peaking PM of GSK3 (Figure 4). 711 

CK2 subunits were not detected in our data and the PM on CK1 was not strongly rhythmic 712 
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(Figure 4). 21 other protein kinases bore rhythmic PMs that are predicted targets of these 713 

clock-related kinases (Supplementary Figures S10C).  714 

Around mitosis at ZT12-16, significantly peaking PMs were detected on cell cycle regulators 715 

CDKA, CDKB and WEE1 (Figure 5D). Kinase PMs peaking at ZT4-8 included Serine-716 

Arginine Protein Kinases (SRPKs), MAPKs, CDKA and a site on Yet Another Kinase 717 

(YAK1). PMs that peaked at ZT0, coincident with the phospho-dawn, included RIO2, YAK1 718 

and CDPK, all implicated in cell cycle regulation and progression (Garrett et al., 1991; 719 

LaRonde-LeBlanc and Wlodawer, 2005). RIO’s are among the few kinase families shared 720 

with the Archaea (Kennelly, 2014), making them candidate contributors to an ancient, non-721 

transcriptional oscillator (Edgar et al., 2012).  722 

Discussion  723 

The diel proteome and phosphoproteome 724 

Our results contribute to understand the ‘reactive’ and ‘anticipatory’ components of protein 725 

regulation in the green lineage under diel (LD) cycles (Mehta et al., 2021). A small fraction 726 

of the O. tauri proteins quantified here were rhythmic (just under 10%), compared to a 727 

majority (58%) of the phosphomotifs (PMs). 85% of rhythmic protein profiles peaked in 728 

daytime, consistent with a ‘reactive’ effect due to the light-regulated translation in this 729 

organism (Martin et al., 2012), and with enrichment of translation-related functions among 730 

daytime-peaking proteins. This result reinforces the dangers of using RNA profiles as a proxy 731 

for biological function in general. In this case, however, translation, ribosome biogenesis and 732 

RNA processing functions were enriched among dawn-expressed RNAs (Supplementary 733 

Table S5), preceding the enrichment of both translation and chlorophyll biosynthesis GO 734 

terms among day-peaking, rhythmic proteins (Figure S5). Observing the expected effects of 735 

light-regulated translation further supports our prediction that “translational coincidence” 736 

should alter the O. tauri proteome in different day lengths, as some rhythmic RNAs will 737 

coincide with light-stimulated translation only in long days (Seaton et al., 2018). Overall, 738 

rhythmic proteins in our data set also have a higher, calculated cost of protein expression than 739 

non-rhythmic proteins (Laloum and Robinson-Rechavi, 2022), consistent with the notion that 740 

rhythmicity might give a selective advantage by limiting this costly protein synthesis to a 741 

fraction of the diel cycle. 742 

 743 
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In contrast, the largest number of PM profiles peaked in the pre-dawn, ZT0 timepoint. This 744 

pattern was consistent with the distribution of the rhythmic phosphopeptide profiles that Kay 745 

et al. (2021) detected without specific enrichment, which also peaked most often in their pre-746 

dawn interval. The anticipatory ‘phospho-dawn’ might be controlled by the circadian clock. 747 

Circadian regulation would be expected to persist under constant conditions, which were not 748 

tested here. Studies in Arabidopsis under constant light, however, identified a high fraction of 749 

rhythmic phosphopeptides that peaked at subjective dawn (Choudhary et al., 2015; Krahmer 750 

et al., 2022), suggesting a similar, circadian-regulated phospho-dawn in higher plants. Such 751 

phospho-regulation might prepare green cells for daytime functions and/or end night-time 752 

activities, before light-stimulated translation facilitates new protein synthesis. 753 

Acid-directed target sites were clearly enriched at ZT0, implicating the clock-related kinases 754 

CK1 and CK2 in regulating the phospho-dawn in O. tauri. Enrichment of proline-directed 755 

target sites occurs in antiphase, at ZT12-16, which implicates the 19 CMGC-class kinase 756 

proteins (Hindle et al., 2014) including CDKs, MAPKs and GSK3. These phase-specific 757 

enrichments were clearer than in the Arabidopsis studies, suggesting that the minimal kinase-758 

target network of O. tauri might be easier to resolve in future. Comparison to the specific 759 

rhythmic kinases in animals is limited, because the most-rhythmic kinase Akt (also known as 760 

Protein Kinase B) in mouse liver (Robles et al., 2017) is absent from the green lineage 761 

(Hindle et al., 2014). Rhythmic phosphopeptide targets of CDK1 and CK1D peaked in 762 

phosphorylation at a similar time in liver, in the mid-night (active) interval (Robles et al., 763 

2017), contrasting with their opposite phases in O. tauri. Nonetheless, both the liver and 764 

synaptic phosphoproteomes were more rhythmic than the cognate proteomes and showed a 765 

different distribution of peak phases (Robles et al., 2017; Brüning et al., 2019), indicating 766 

distinctive phospho-regulation. Clusters of peak phosphorylation anticipated the rest-activity 767 

transitions in the mouse, consistent with the ‘phospho-dawn’ observed here, in the synaptic 768 

phosphoproteome (Brüning et al., 2019) but not in liver (Robles et al., 2017). 769 

The low overall rhythmicity (<10%) in the partial proteome quantified here is consistent with 770 

similar studies in Arabidopsis, which identified 0.1-1.5% rhythmic proteins from 7-9 % of the 771 

proteome in LD, using iTRAQ labelling with similar statistical criteria to ours (Baerenfaller 772 

et al., 2012, 2015), or 4-7% rhythmic proteins from 4% of the proteome under constant light 773 

using a gel-based approach (Choudhary et al., 2016). Our results provide 11% coverage in 774 

the minimal O. tauri proteome, with a more straightforward experimental protocol. Broader 775 

coverage of this proteome was reported (Kay et al., 2021) after our preprint was released 776 
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(Noordally et al., 2018, Preprint), in experiments that included an extensive, high pH reverse 777 

phase fractionation, among several technical differences. Their higher reported fraction of 778 

rhythmic proteins might reflect the detection of low-abundance proteins and/or analysis with 779 

no minimum amplitude threshold. 780 

 781 

The ‘dark state’ is indirectly associated with lipid synthesis  782 

Among the rhythmic proteins reported here, some of the most highly-regulated were four 783 

prasinophyte-specific sequences (unnamed proteins ostta02g03680, ostta03g04960, 784 

ostta07g00470, ostta09g00670; Figure 3A) along with ostta03g04500 (Supplementary Figure 785 

S2A, S8B). These proteins accumulated further in prolonged darkness (Figure 3A). We 786 

previously showed that O. tauri stop transcription and cell division in those conditions 787 

(O’Neill et al., 2011). Cultures resume gene expression and growth upon return to LD cycles, 788 

suggesting that dark adaptation induces a state of cellular quiescence. The ecological 789 

relevance of a quiescent ‘dark state’ for photo-autotrophic, surface-dwelling O. tauri might 790 

not be immediately obvious. However, Ostreococcus relatives can persist under the Polar 791 

Night (Joli et al., 2017). Quiescent forms in other phytoplankton (Roy et al., 2014), including 792 

in soil or sediments, can be ecologically important in benthic-pelagic coupling (Marcus and 793 

Boero, 1998). Cells near the deep chlorophyll maximum (Cardol et al., 2008) could be moved 794 

into the dark, benthic zone by turbulence, to return later via upwelling (Countway and Caron, 795 

2006; Collado-Fabbri et al., 2011). Understanding the laboratory ‘dark state’ is therefore 796 

likely to have ecological relevance. 797 

Protein content dropped significantly between 12h and 36h of darkness (ZT24 to ZT48) but 798 

was then stable. Cultures of Chlamydomonas reinhardtii showed a 50% reduction in protein 799 

per cell within 24h of nitrogen starvation due to a final cell division (Schmollinger et al., 800 

2014), whereas increased cell number did not explain the lower protein content in our dark-801 

adapting cultures. Proteins associated with cytosolic translation were notably depleted 802 

(Supplementary Table 6), rather than abundant, chloroplast proteins involved in 803 

photosynthesis. Photosynthetic functions might be particularly important to recover from 804 

quiescence, similar to the rapid regrowth observed after nutrient starvation (Liefer et al., 805 

2018).  806 

Our culture conditions included sorbitol and glycerol in the growth medium, which are 807 

required for viability in prolonged darkness (O’Neill et al., 2011) and can likely support 808 
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metabolic activity in O. tauri (Smallwood et al., 2018b, Preprint). Both dark-accumulating 809 

and dark-depleted proteins identified in our studies overlapped with proteins that were 810 

similarly regulated under nitrogen depletion, particularly when combined with increased 811 

carbon availability (Smallwood et al., 2018a, Preprint). Nitrogen depletion is commonly used 812 

to induce lipid synthesis in algae, in the context of third-generation biofuel production 813 

(Zienkiewicz et al., 2016). Both chloroplast and ribosomal proteins can be depleted in these 814 

conditions, though only a subset of lipid-metabolic proteins accumulate (Schmollinger et al., 815 

2014). Prolonged darkness and/or hypoxia can also induce lipid accumulation, and hypoxia 816 

can occur in dark-adapting algal cultures due to continued respiration (Hemschemeier et al., 817 

2013). Our ‘dark state’ proteome might therefore reflect active lipid synthesis from the 818 

sorbitol and glycerol in the growth medium.  819 

O. tauri can form both intracellular lipid droplets and extracellular droplets in membrane-820 

bound ‘pea-pod’ structures (Smallwood et al., 2018b, Preprint). Lipid droplets in other algae 821 

include major proteins that are restricted to limited taxonomic groups (Zienkiewicz et al., 822 

2016), so functionally equivalent proteins in O. tauri might be specific to the prasinophyte 823 

group. Some lipid droplet proteins are predicted to have all-alpha-helical structure, including 824 

the Major Lipid Droplet Protein Cre09.g405500 of Chlamydomonas reinhardtii or the Lipid 825 

Droplet Surface Protein of the stramenophile Nannochloropsis oceanica. Protein structure 826 

homology modelling aligned ostta02g03680 with a human BAR domain dimer, an all-helical 827 

protein domain that can sense and create membrane curvature (Simunovic et al., 828 

2015)(Supplementary Figure S11), suggesting that this O. tauri protein might also be 829 

involved in lipid droplets. N. oceanica lipid synthesis and LDSP accumulation is highly 830 

rhythmic but day-phased (Poliner et al., 2015). The night-expressed proteins in O. tauri 831 

indirectly suggest a different regulation of lipid synthesis, that could have biotechnological 832 

relevance. Future studies to understand the transition to the ‘dark state’ in O. tauri will need 833 

to consider both cellular metabolite pools and extruded components, such as lipid droplets.  834 

Supplementary Data Summary 835 

Supplementary Figure S1. Identification of outlier phosphopeptide replicate 4E.  836 
 837 

Supplementary Figure S2. Most-detected protein and PM profiles. 838 

 839 
Supplementary Figure S3. Changing PMs on non-changing proteins.  840 
 841 

Supplementary Figure S4. Clustered protein and PM profiles with enriched functions.  842 
 843 
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Supplementary Figure S5. Phase-specific GO term enrichment.  844 
 845 

Supplementary Figure S6. Simulation of light-regulated translation.  846 
 847 

Supplementary Figure S7. Loci identified in both LD protein and phosphopeptide motif 848 

datasets.  849 
 850 

Supplementary Figure S8. Regulation of proteins tested under Dark Adaptation (DA).  851 
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Supplementary Figure S9. Protein and phospho-protein abundance in LD cycle.  853 

 854 

Supplementary Figure S10. CK1, CK2 and GSK3 kinase targets and phosphorylation sites in 855 

rhythmic kinases.  856 
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Supplementary Figure S11. Structural homology of rhythmic, prasinophyte-specific protein.  858 

 859 

--- 860 

 861 

Supplementary Table S1. Proteins quantified under LD. 862 
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Supplementary Table S2. Phosphopeptide Motifs (PMs) quantified under LD. 864 

 865 

Supplementary Table S3. GO term enrichment among RNA, proteins and PMs contributing to 866 

PCA. 867 

 868 

Supplementary Table S4. GO term enrichment among RNA, proteins and PMs in clusters. 869 
Individually-significant, rhythmic protein profiles are considered, to provide sufficient numbers for 870 

enrichment analysis. Only BH-corrected significant PM profiles with >1.5-fold changes are 871 

considered. 872 

 873 

Supplementary Table S5. GO term enrichment among rhythmic proteins and PMs by 874 
peak/trough times. Only BH-corrected significant protein or PM profiles with >1.5-fold changes are 875 

considered. 876 
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Supplementary Table S6. Proteins quantified under Dark Adaptation. 878 
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FIGURE LEGENDS 909 

Figure 1. Daily variation in transcripts, proteins, and phosphopeptide motifs. (A) Workflow for 910 

proteomics in O. tauri under LD. Overlap in (B) detected and quantified gene loci, (C) significantly 911 

changing (solid circles) or not significantly-changing (dashed circles) loci for transcripts (Monnier et 912 

al., 2010), proteins and PMs; genomic loci excluded (square brackets). (D-I) Bi-plots of PCA for the 913 
timeseries of mean levels of each (D, E) transcript, (F, G) protein and (H, I) phosphomotif. The 914 

proportion of the variance for each PC is indicated. Dot locations show the weighting of each 915 

RNA/protein/PM timeseries in each PC; colours show the assigned cluster (as in Supplementary A,B 916 

S4A,B). Loading arrows show the magnitude (by length) and relative contribution (by direction) of 917 
data from each time-point to the PCs that are plotted, hence the angles between loading arrows 918 

indicate correlation (0°) and anticorrelation (180°).   919 

 920 

Figure 2. Distribution of rhythmic protein and phosphopeptide motif peaks, with examples.  921 
Temporal distribution of peaking profiles in (A) transcripts, (B) proteins and (C) PMs. (D, F) 922 

Simulated protein profiles from RNAs peaking at (D) ZT0 or (F) ZT16, with (red line) or without 923 

light-regulated translation (black line). (E) predicted distribution of protein peak times, with light-924 

regulated translation. Examples of genes with (G) high-amplitude and similar protein (solid line) and 925 

PM profiles (coloured lines), or (H) PM profiles that differ from the protein profile. (G, H) protein 926 
and PM, left axis; RNA profile (dashed line), right axis. Error bars, S.E. Light/dark indicated by 927 

white/black bars. 928 

 929 
Figure 3. Regulation of dark-accumulating proteins. Protein abundance profiles (A) of rhythmic 930 

prasinophyte-specific proteins in cluster P6 in LD and DA conditions. (B) Optical density (OD600; 931 
line, right axis) and total protein per cell (columns, left axis) under LD and DA conditions. (C) 932 

Correlation of protein degradation rates (Martin et al., 2012) and relative protein levels after DA; 933 

chloroplast proteins (circles, chloroplast-encoded have solid outline); mitochondrial proteins 934 

(triangles, mitochondria-encoded outlined); PLP-enzymes (squares, marked in legend); prasinophyte-935 

specific proteins (diamonds).  936 

 937 

Figure 4. Protein and phosphopeptide motif regulation. 938 
Phosphomotif (coloured lines) and RNA profiles (Monnier et al., 2010)(dashed lines) of the 939 

photoreceptors, clock components, transcription factors and kinases indicated, under LD. Left axis 940 

range 26 (64-fold) except OtCCA1 (PM changes 150-fold) and OtCOL2 (PMs change up to 20-fold). 941 

Right (RNA) axis range 12, for log2 data (212=4096-fold in untransformed data). Error bars, S.E. 942 

Light/dark indicated by white/black bars. PHOT, phototropin photoreceptor; LOV-HK, LOV domain 943 

– histidine kinase photoreceptor; COL, CONSTANS-like transcription factor. 944 

 945 
Figure 5. Motif enrichment and rhythmic protein kinases and phosphatases under LD. (A) 946 

Rhythmic PMs peaking at each timepoint on protein kinase (black) and phosphatase (grey) proteins 947 

(numbers). (B) Enrichment of proline-directed motifs, for kinases shown in the legend (dashed line, p-948 

value = 0.05). (C) pLogo sequence motifs of rhythmic PMs peaking at each timepoint (foreground; 949 

fg), relative to all detected phosphopeptides (background; bg). ± 3.80 indicates p-value = 0.05, 950 
residues above and below axis are over- and under-represented, respectively. (D) Rhythmic PMs by 951 

kinase/phosphatase family, annotated with example proteins. 952 

 953 

  954 
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Supplementary Figure Legends  955 

 956 

Supplementary Figure S1. Identification of outlier phosphopeptide replicate 4E. Pearson’s 957 

correlation for (A) proteins and (B) phosphopeptide motifs and sample replicate r2 respective to 958 

median abundance at a ZT for (C) proteins and (D) phosphopeptide motifs. Note differing scales in 959 
(A,B), (C,D). 960 

 961 

Supplementary Figure S2. Most-detected protein and PM profiles. with comprehensive heat 962 
maps, clusters and enriched functions. Highly-abundant proteins (A) and PMs (B) under LD 963 
conditions (* marks rhythmic PMs). Error bars, S.E. Light/dark indicated by white/black bars, above. 964 

 965 

Supplementary Figure S3. Changing PMs on non-changing proteins. Significantly non-changing 966 

proteins (Black lines) determined by two one-sided tests (TOST; ε = 0.3), plotted with their rhythmic 967 

phosphopeptide motifs ± S.E., square brackets show phosphorylated residue. Light/dark indicated by 968 

white/black bars. 969 

 970 

Supplementary Figure S4. Clustered protein and PM profiles with examples. Heat maps of 971 

median-normalised (A) protein and (B) PM abundance, with insets top left showing the distribution of 972 
levels and colour scale. Clusters P1-8 or PM1-8 are shown, colours in ‘cluster’ track are as in Figure 973 

1D-1I; FDR track shows >1.5 fold-change and BH FDR adjusted p-value <0.05 (black line) or <0.01 974 

(orange line); bars to right of each panel show the mean protein or PM abundance (log10 scale). 975 

Light/dark indicated by white/black bars, above. (C, D) Examples of significantly-changing proteins 976 

and PMs in each cluster (as noted in the main text).  977 

 978 
Supplementary Figure S5. GO enrichments for peaks and troughs. GO Biological Process term 979 

enrichment for rhythmic (A) proteins and (B) phosphopeptide motifs, that was significant (Fisher’s 980 

exact test p-value <0.05) in profiles with peak (no shading) or trough (pink shading) time at each 981 

timepoint. Light/dark samples indicated by white/black column. Grey bars in column Significant 982 

represent the proportion of proteins or PMs with a rhythmic peak or trough at the indicated time, 983 

which contributed to significant enrichment of the term indicated, with respect to the total number of 984 

background proteins Annotated with this term. 985 

 986 
Supplementary Figure S6. Simulation of light-regulated translation. (A-C) Simulation of protein 987 

dynamics for an RNA with peak expression at ZT0 (A), ZT8 (B) and ZT16 (C), with observed, light-988 

regulated translation rate (red lines) or with constant translation rate (black lines). Distribution of 989 

protein peaks (D,F) and troughs (E,G) for the model with light-regulated translation (D,E) compared 990 

to data (F,G). Distributions for constant translation would reflect the distribution of RNA profiles. 991 
 992 

Supplementary Figure S7. Loci identified in both LD protein and phosphopeptide motif 993 
datasets. (A, B) Peak time is compared for genes identified in both LD protein and phosphopeptide 994 

motif datasets, with examples (C). (A) Mixed phase: multiple PMs, peaking at same and different 995 

times from cognate protein.  Green shading in (B) follows number per bin. Plotting conventions in (C) 996 
follow Figure 2G, 2H.  997 

 998 

Supplementary Figure S8. Regulation of proteins tested under Dark Adaptation (DA).  999 
For ten proteins compared in the DA and metabolic labelling (Martin et al., 2012) data (Figure 3C), 1000 
(A) RNA abundance under LD and DA conditions from qRT-PCR assays, and (B) protein profiles 1001 

under LD. *, rhythmic proteins. Error bar, S.E. 1002 

 1003 

Supplementary Figure S9. Protein and phospho-protein abundance in LD cycle. Stained gels 1004 

showing changes in (A) protein and (B) phosphorylated protein abundance in LD, with (C) ratio of 1005 
quantified, phosphorylated protein to total protein intensity. 1006 

 1007 
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Supplementary Figure S10. CK1, CK2 and GSK3 kinase targets and phosphorylation sites in 1008 
rhythmic kinases. Distribution of GPS3-predicted CK1 (black), CK2 (red) and GSK3 (blue) targets 1009 

among rhythmic phosphopeptide motifs, binned by peak (A) and trough (B) times. (C) Phosphosites 1010 

on rhythmic protein kinases predicted to be phosphorylated by CK1, CK2 and GSK3, site location 1011 

labels coloured as in (A). * sites first reported here; †‡ sites observed previously (van Ooijen et al., 1012 

2013). Protein kinase classes are coloured as in Figure 5. 1013 

 1014 

Supplementary Figure S11. Structural homology of a rhythmic prasinophyte-specific protein. 1015 

Structural homology models predicted using I-TASSER of (A) ostta02g03680 where the model is 1016 

overlaid with (B) H. sapiens BAR domain structure (2d4c). Model α-helices (purple) and β-sheets 1017 

(green) are numbered in black on the O. tauri model and in blue where structure is conserved with 1018 
homologue protein overlay and in white where secondary structure is not conserved. 1019 

 1020 



O. tauri Culturing
6 days LD

0 4 8 201612

Sample
Preparation
Day 7
Harvest at 6 
time points
 

380 μg

Trypsin digest

Phosphopeptide
enrichment

LC-MS

Mascot

MaxQuant

Progenesis

5 X replication

4 μg

qPMerge

Label-free
Quantitation
 
Peptide/
Protein I.D./
quantification

Peptide
merging

Data analysis

A

5113

459

46
4

27

8

99
[2059]

5622 85

570

737 6 67

45
1

11

513
[6435]

789 85

570

4769 390
104
*49

413
50

15

92
[1982]

5622 559

570

5545 50 35

27
0

0

4
[2154]

5622 85

31

Significant
Non-significant

* Equivalent

B

29
%

34%

31
%

35%

17
%

31%
1 2 3 4 5 6 7 8Protein and phosphopeptide 

motif clusters

11
%

27%48%

27
%

0 1 2 3 4 6 7 9 101112Transcript clusters

D E

F

20
%

29%

G

H

4958 138

69

28
110

653

5796300 855

[1280]
860

Protein
RNA

Phospho

 
C

h
an

g
in

g
 lo

ci

C 

PC1 Score

P
C

2
 S

co
re

0

4

8
12

16
20

-2 -1 0 1 2

-2
-1

0
1

2

PC2 Score

P
C

3 
S

co
re

0

4

8

12

16 20

-2 -1 0 1 2

-2
-1

0
1

2

PC1 Score

P
C

2 
S

co
re

0

4
8

12

16
20

-2 -1 0 1 2

-2
-1

0
1

2

PC2 Score

0

4

812

20

16
-2 -1 0 1 2

3
-1

0
1

2
P

C
3 

S
co

re

I

R
N

A
P

ro
te

in
P

h
o

sp
h

o



Figure 1. Daily variation in transcripts, proteins, and phosphopeptide motifs. (A) Workflow for 

proteomics in O. tauri under LD. Overlap in (B) detected and quantified gene loci, (C) significantly 

changing (solid circles) or not significantly-changing (dashed circles) loci for transcripts (Monnier et 

al., 2010), proteins and PMs; genomic loci excluded (square brackets). (D-I) Bi-plots of PCA for the 

timeseries of mean levels of each (D, E) transcript, (F, G) protein and (H, I) phosphomotif. The 

proportion of the variance for each PC is indicated. Dot locations show the weighting of each 

RNA/protein/PM timeseries in each PC; colours show the assigned cluster (as in Supplementary A,B 

S4A,B). Loading arrows show the magnitude (by length) and relative contribution (by direction) of 

data from each time-point to the PCs that are plotted, hence the angles between loading arrows 

indicate correlation (0°) and anticorrelation (180°). 
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Figure 2. Distribution of rhythmic protein and phosphopeptide motif peaks, with examples.  

Temporal distribution of peaking profiles in (A) transcripts, (B) proteins and (C) PMs. (D, F) 

Simulated protein profiles from RNAs peaking at (D) ZT0 or (F) ZT16, with (red line) or without 

light-regulated translation (black line). (E) predicted distribution of protein peak times, with light-

regulated translation. Examples of genes with (G) high-amplitude and similar protein (solid line) and 

PM profiles (coloured lines), or (H) PM profiles that differ from the protein profile. (G, H) protein 

and PM, left axis; RNA profile (dashed line), right axis. Error bars, S.E. Light/dark indicated by 

white/black bars. 

 

  





Figure 3. Regulation of dark-accumulating proteins. Protein abundance profiles (A) of rhythmic 

prasinophyte-specific proteins in cluster P6 in LD and DA conditions. (B) Optical density (OD600; 

line, right axis) and total protein per cell (columns, left axis) under LD and DA conditions. (C) 

Correlation of protein degradation rates (Martin et al., 2012) and relative protein levels after DA; 

chloroplast proteins (circles, chloroplast-encoded have solid outline); mitochondrial proteins 

(triangles, mitochondria-encoded outlined); PLP-enzymes (squares, marked in legend); prasinophyte-

specific proteins (diamonds).  

 

  





Figure 4. Protein and phosphopeptide motif regulation. 

Phosphomotif (coloured lines) and RNA profiles (Monnier et al., 2010)(dashed lines) of the 

photoreceptors, clock components, transcription factors and kinases indicated, under LD. Left axis 

range 26 (64-fold) except OtCCA1 (PM changes 150-fold) and OtCOL2 (PMs change up to 20-fold). 

Right (RNA) axis range 12, for log2 data (212=4096-fold in untransformed data). Error bars, S.E. 

Light/dark indicated by white/black bars. PHOT, phototropin photoreceptor; LOV-HK, LOV domain 

– histidine kinase photoreceptor; COL, CONSTANS-like transcription factor. 
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Figure 5. Motif enrichment and rhythmic protein kinases and phosphatases under LD. (A) 

Rhythmic PMs peaking at each timepoint on protein kinase (black) and phosphatase (grey) proteins 

(numbers). (B) Enrichment of proline-directed motifs, for kinases shown in the legend (dashed line, p-

value = 0.05). (C) pLogo sequence motifs of rhythmic PMs peaking at each timepoint (foreground; 

fg), relative to all detected phosphopeptides (background; bg). ± 3.80 indicates p-value = 0.05, 

residues above and below axis are over- and under-represented, respectively. (D) Rhythmic PMs by 

kinase/phosphatase family, annotated with example proteins. 

 


