773 research outputs found

    Neutrinoless Double Beta Decay, the Inverted Hierarchy and Precision Determination of theta(12)

    Get PDF
    Ruling out the inverted neutrino hierarchy with neutrinoless double beta decay experiments is possible if a limit on the effective mass below the minimal theoretically possible value is reached. We stress that this lower limit depends strongly on the value of the solar neutrino mixing angle: it introduces an uncertainty of a factor of 2 within its current 3 sigma range. If an experiment is not background-free, a factor of two in effective mass corresponds to a combined factor of 16 improvement for the experimental parameters running time, detector mass, background level and energy resolution. Therefore, a more precise determination of theta(12) is crucial for the interpretation of experimental results and the evaluation of the potential and requirements for future experiments. We give the required half-lifes to exclude (and touch) the inverted hierarchy regime for all double beta decay isotopes with a Q-value above 2 MeV. The nuclear matrix elements from 6 different groups and, if available, their errors are used and compared. We carefully put the calculations on equal footing in what regards various convention issues. We also use our compilation of matrix elements to give the reachable values of the effective mass for a given half-life value.Comment: 26 pages, 6 figures. v2: error corrected (misprint in paper we took a value from), slightly modifying the result

    Rejection of randomly coinciding events in ZnMoO4_4 scintillating bolometers

    Full text link
    Random coincidence of events (particularly from two neutrino double beta decay) could be one of the main sources of background in the search for neutrinoless double beta decay with cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, mean-time and χ2\chi^2 methods was applied to discriminate randomly coinciding events in ZnMoO4_4 cryogenic scintillating bolometers. These events can be effectively rejected at the level of 99% by the analysis of the heat signals with rise-time of about 14 ms and signal-to-noise ratio of 900, and at the level of 92% by the analysis of the light signals with rise-time of about 3 ms and signal-to-noise ratio of 30, under the requirement to detect 95% of single events. These rejection efficiencies are compatible with extremely low background levels in the region of interest of neutrinoless double beta decay of 100^{100}Mo for enriched ZnMoO4_4 detectors, of the order of 10410^{-4} counts/(y keV kg). Pulse-shape parameters have been chosen on the basis of the performance of a real massive ZnMoO4_4 scintillating bolometer. Importance of the signal-to-noise ratio, correct finding of the signal start and choice of an appropriate sampling frequency are discussed

    Characterization of a ZnSe scintillating bolometer prototype for neutrinoless double beta decay search

    Get PDF
    As proposed in the LUCIFER project, ZnSe crystals are attractive materials to realize scintillating bolometers aiming at the search for neutrinoless double beta decay of the promising isotope 82Se. However, the optimization of the ZnSe-based detectors is rather complex and requires a wide-range investigation of the crystal features: optical properties, crystalline quality, scintillation yields and bolometric behaviour. Samples tested up to now show problems in the reproducibility of crucial aspects of the detector performance. In this work, we present the results obtained with a scintillating bolometer operated aboveground at about 25 mK. The detector energy absorber was a single 1 cm3 ZnSe crystal. The good energy resolution of the heat channel (about 14 keV at 1460 keV) and the excellent alpha/beta discrimination capability are very encouraging for a successful realization of the LUCIFER program. The bolometric measurements were completed by optical tests on the crystal (optical transmission and luminescence measurements down to 10 K) and investigation of the crystalline structure. The work here described provides a set of parameters and procedures useful for a complete pre-characterization of ZnSe crystals in view of the realization of highly performing scintillating bolometers

    Background suppression in massive TeO2_2 bolometers with Neganov-Luke amplified light detectors

    Full text link
    Bolometric detectors are excellent devices for the investigation of neutrinoless double-beta decay (0νββ\nu\beta\beta). The observation of such decay would demonstrate the violation of lepton number, and at the same time it would necessarily imply that neutrinos have a Majorana character. The sensitivity of cryogenic detectors based on TeO2_2 is strongly limited by the alpha background in the region of interest for the 0νββ\nu\beta\beta of 130^{130}Te. It has been demonstrated that particle discrimination in TeO2_2 bolometers is possible measuring the Cherenkov light produced by particle interactions. However an event-by-event discrimination with NTD-based light detectors has to be demonstrated. We will discuss the performance of a highly-sensitive light detector exploiting the Neganov-Luke effect for signal amplification. The detector, being operated with NTD-thermistor and coupled to a 750 g TeO2_2 crystal, shows the ability for an event-by-event identification of electron/gamma and alpha particles. The extremely low detector baseline noise, RMS 19 eV, demonstrates the possibility to enhance the sensitivity of TeO2_2-based 0νββ\nu\beta\beta experiment to an unprecedented level

    Rejection of randomly coinciding events in Li2_2100^{100}MoO4_4 scintillating bolometers using light detectors based on the Neganov-Luke effect

    Get PDF
    Random coincidences of nuclear events can be one of the main background sources in low-temperature calorimetric experiments looking for neutrinoless double-beta decay, especially in those searches based on scintillating bolometers embedding the promising double-beta candidate 100^{100}Mo, because of the relatively short half-life of the two-neutrino double-beta decay of this nucleus. We show in this work that randomly coinciding events of the two-neutrino double decay of 100^{100}Mo in enriched Li2_2100^{100}MoO4_4 detectors can be effectively discriminated by pulse-shape analysis in the light channel if the scintillating bolometer is provided with a Neganov-Luke light detector, which can improve the signal-to-noise ratio by a large factor, assumed here at the level of 750\sim 750 on the basis of preliminary experimental results obtained with these devices. The achieved pile-up rejection efficiency results in a very low contribution, of the order of 6×105\sim 6\times10^{-5} counts/(keV\cdotkg\cdoty), to the background counting rate in the region of interest for a large volume (90\sim 90 cm3^3) Li2_2100^{100}MoO4_4 detector. This background level is very encouraging in view of a possible use of the Li2_2100^{100}MoO4_4 solution for a bolometric tonne-scale next-generation experiment as that proposed in the CUPID project

    Thyroid hormone treated astrocytes induce maturation of cerebral cortical neurons through modulation of proteoglycan levels

    Get PDF
    Proper brain neuronal circuitry formation and synapse development is dependent on specific cues, either genetic or epigenetic, provided by the surrounding neural environment. Within the sesignals, thyroid hormones (T3 and T4) play crucial role in several steps of brain morphogenesis including proliferation of progenitor cells, neuronal differentiation, maturation, migration, and synapse formation. the lack of thyroid hormones during childhood is associated with several impair neuronal connections, cognitive deficits, and mental disorders. Many of the thyroid hormones effects are mediated by astrocytes, although the mechanisms underlying these events are still unknown. in this work, we investigated the effect of 3,5,3'-triiodothyronine-treated (T3-treated) astrocytes on cerebral cortex neuronal differentiation. Culture of neural progenitors from embryonic cerebral cortex mice onto T3-treated astrocyte monolayers yielded an increment in neuronal population, followed by enhancement of neuronal maturation, arborization and neurite outgrowth. in addition, real time PCR assays revealed an increase in the levels of the heparan sulfate proteoglycans, Glypican 1(GPC-1) and Syndecans 3 e 4 (SDC-3 e SDC-4), followed by a decrease in the levels of the chondroitin sulfate proteoglycan, Versican. Disruption of glycosaminoglycan chains by chondroitinase AC or heparanase III completely abolished the effects of T3-treated astrocytes on neuronal morphogenesis. Our work provides evidence that astrocytes are key mediators of T3 actions on cerebral cortex neuronal development and identified potential molecules and pathways involved in neurite extension; which might eventually contribute to a better understanding of axonal regeneration, synapse formation, and neuronal circuitry recover.Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Conselho Nacional para o Desenvolvimento Cientifico e TecnologicoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Fed Rio de Janeiro, Inst Ciencias Biomed, BR-21949590 Rio de Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Inst Bioquim Med, BR-21949590 Rio de Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Hosp Univ Clementino Fraga Filho, BR-21949590 Rio de Janeiro, RJ, BrazilUniversidade Federal de São Paulo, Dept Bioquim, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Bioquim, São Paulo, BrazilWeb of Scienc
    corecore