45 research outputs found

    AON-mediated Exon Skipping Restores Ciliation in Fibroblasts Harboring the Common Leber Congenital Amaurosis CEP290 Mutation

    Get PDF
    Leber congenital amaurosis (LCA) is a severe hereditary retinal dystrophy responsible for congenital or early-onset blindness. The most common disease-causing mutation (>10%) is located deep in intron 26 of the CEP290 gene (c.2991+1655A>G). It creates a strong splice donor site that leads to insertion of a cryptic exon encoding a premature stop codon. In the present study, we show that the use of antisense oligonucleotides (AONs) allow an efficient skipping of the mutant cryptic exon and the restoration of ciliation in fibroblasts of affected patients. These data support the feasibility of an AON-mediated exon skipping strategy to correct the aberrant splicing

    Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome

    Get PDF
    A homozygous mutational change in the Ataxia-Telangiectasia and RAD3 related (ATR) gene was previously reported in two related families displaying Seckel Syndrome (SS). Here, we provide the first identification of a Seckel Syndrome patient with mutations in ATRIP, the gene encoding ATR-Interacting Protein (ATRIP), the partner protein of ATR required for ATR stability and recruitment to the site of DNA damage. The patient has compound heterozygous mutations in ATRIP resulting in reduced ATRIP and ATR expression. A nonsense mutational change in one ATRIP allele results in a C-terminal truncated protein, which impairs ATR-ATRIP interaction; the other allele is abnormally spliced. We additionally describe two further unrelated patients native to the UK with the same novel, heterozygous mutations in ATR, which cause dramatically reduced ATR expression. All patient-derived cells showed defective DNA damage responses that can be attributed to impaired ATR-ATRIP function. Seckel Syndrome is characterised by microcephaly and growth delay, features also displayed by several related disorders including Majewski (microcephalic) osteodysplastic primordial dwarfism (MOPD) type II and Meier-Gorlin Syndrome (MGS). The identification of an ATRIP-deficient patient provides a novel genetic defect for Seckel Syndrome. Coupled with the identification of further ATR-deficient patients, our findings allow a spectrum of clinical features that can be ascribed to the ATR-ATRIP deficient sub-class of Seckel Syndrome. ATR-ATRIP patients are characterised by extremely severe microcephaly and growth delay, microtia (small ears), micrognathia (small and receding chin), and dental crowding. While aberrant bone development was mild in the original ATR-SS patient, some of the patients described here display skeletal abnormalities including, in one patient, small patellae, a feature characteristically observed in Meier-Gorlin Syndrome. Collectively, our analysis exposes an overlapping clinical manifestation between the disorders but allows an expanded spectrum of clinical features for ATR-ATRIP Seckel Syndrome to be define

    Functions of the Nonsense-Mediated mRNA Decay Pathway in Drosophila Development

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is a cellular surveillance mechanism that degrades transcripts containing premature translation termination codons, and it also influences expression of certain wild-type transcripts. Although the biochemical mechanisms of NMD have been studied intensively, its developmental functions and importance are less clear. Here, we describe the isolation and characterization of Drosophila “photoshop” mutations, which increase expression of green fluorescent protein and other transgenes. Mapping and molecular analyses show that photoshop mutations are loss-of-function mutations in the Drosophila homologs of NMD genes Upf1, Upf2, and Smg1. We find that Upf1 and Upf2 are broadly active during development, and they are required for NMD as well as for proper expression of dozens of wild-type genes during development and for larval viability. Genetic mosaic analysis shows that Upf1 and Upf2 are required for growth and/or survival of imaginal cell clones, but this defect can be overcome if surrounding wild-type cells are eliminated. By contrast, we find that the PI3K-related kinase Smg1 potentiates but is not required for NMD or for viability, implying that the Upf1 phosphorylation cycle that is required for mammalian and Caenorhabditis elegans NMD has a more limited role during Drosophila development. Finally, we show that the SV40 3′ UTR, present in many Drosophila transgenes, targets the transgenes for regulation by the NMD pathway. The results establish that the Drosophila NMD pathway is broadly active and essential for development, and one critical function of the pathway is to endow proliferating imaginal cells with a competitive growth advantage that prevents them from being overtaken by other proliferating cells

    Truncating and missense BMPR2 mutations differentially affect the severity of heritable pulmonary arterial hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal dominant inheritance of germline mutations in the bone morphogenetic protein receptor type 2 (<it>BMPR2</it>) gene are a major risk factor for pulmonary arterial hypertension (PAH). While previous studies demonstrated a difference in severity between <it>BMPR2 </it>mutation carriers and noncarriers, it is likely disease severity is not equal among <it>BMPR2 </it>mutations. We hypothesized that patients with missense <it>BMPR2 </it>mutations have more severe disease than those with truncating mutations.</p> <p>Methods</p> <p>Testing for <it>BMPR2 </it>mutations was performed in 169 patients with PAH (125 with a family history of PAH and 44 with sporadic disease). Of the 106 patients with a detectable <it>BMPR2 </it>mutation, lymphocytes were available in 96 to functionally assess the nonsense-mediated decay pathway of RNA surveillance. Phenotypic characteristics were compared between <it>BMPR2 </it>mutation carriers and noncarriers, as well as between those carriers with a missense versus truncating mutation.</p> <p>Results</p> <p>While there was a statistically significant difference in age at diagnosis between carriers and noncarriers, subgroup analysis revealed this to be the case only for females. Among carriers, there was no difference in age at diagnosis, death, or survival according to exonic location of the <it>BMPR2 </it>mutation. However, patients with missense mutations had statistically significant younger ages at diagnosis and death, as well as shorter survival from diagnosis to death or lung transplantation than those with truncating mutations. Consistent with this data, the majority of missense mutations were penetrant prior to age 36 years, while the majority of truncating mutations were penetrant after age 36 years.</p> <p>Conclusion</p> <p>In this cohort, <it>BMPR2 </it>mutation carriers have more severe PAH disease than noncarriers, but this is only the case for females. Among carriers, patients with missense mutations that escape nonsense-mediated decay have more severe disease than those with truncating mutations. These findings suggest that treatment and prevention strategies directed specifically at <it>BMPR2 </it>pathway defects may need to vary according to the type of mutation.</p

    Nonsense-Mediated mRNA Decay Impacts MSI-Driven Carcinogenesis and Anti-Tumor Immunity in Colorectal Cancers

    Get PDF
    Nonsense-mediated mRNA Decay (NMD) degrades mutant mRNAs containing premature termination codon (PTC-mRNAs). Here we evaluate the consequence of NMD activity in colorectal cancers (CRCs) showing microsatellite instability (MSI) whose progression is associated with the accumulation of PTC-mRNAs encoding immunogenic proteins due to frameshift mutations in coding repeat sequences. Inhibition of UPF1, one of the major NMD factors, was achieved by siRNA in the HCT116 MSI CRC cell line and the resulting changes in gene expression were studied using expression microarrays. The impact of NMD activity was also investigated in primary MSI CRCs by quantifying the expression of several mRNAs relative to their mutational status and to endogenous UPF1 and UPF2 expression. Host immunity developed against MSI cancer cells was appreciated by quantifying the number of CD3ε-positive tumor-infiltrating lymphocytes (TILs). UPF1 silencing led to the up-regulation of 1251 genes in HCT116, among which a proportion of them (i.e. 38%) significantly higher than expected by chance contained a coding microsatellite (P<2×10−16). In MSI primary CRCs, UPF1 was significantly over-expressed compared to normal adjacent mucosa (P<0.002). Our data provided evidence for differential decay of PTC-mRNAs compared to wild-type that was positively correlated to UPF1 endogenous expression level (P = 0.02). A negative effect of UPF1 and UPF2 expression on the host's anti-tumor response was observed (P<0.01). Overall, our results show that NMD deeply influences MSI-driven tumorigenesis at the molecular level and indicate a functional negative impact of this system on anti-tumor immunity whose intensity has been recurrently shown to be an independent factor of favorable outcome in CRCs

    NeuN/Rbfox3 Nuclear and Cytoplasmic Isoforms Differentially Regulate Alternative Splicing and Nonsense-Mediated Decay of Rbfox2

    Get PDF
    Anti-NeuN (Neuronal Nuclei) is a monoclonal antibody used extensively to specifically detect post-mitotic neurons. Anti-NeuN reactivity is predominantly nuclear; by western it detects multiple bands ranging in molecular weight from 45 kDa to >75 kDa. Expression screening putatively identified R3hdm2 as NeuN; however immunoprecipitation and mass spectrometry of the two major NeuN species at 45–50 kDa identified both as the RNA binding protein Rbfox3 (a member of the Fox family of alternative splicing factors), confirming and extending the identification of the 45 kDa band as Rbfox3 by Kim et al. Mapping of the anti-NeuN reactive epitopes in both R3hdm2 and Rbfox3 reveals a common proline- and glutamine-rich domain that lies at the N-terminus of the Rbfox3 protein. Our data suggests that alternative splicing of the Rbfox3 pre-mRNA itself leads to the production of four protein isoforms that migrate in the 45–50 kDa range, and that one of these splicing choices regulates Rbfox3/NeuN sub-cellular steady-state distribution, through the addition or removal of a short C-terminal extension containing the second half of a bipartite hydrophobic proline-tyrosine nuclear localization signal. Rbfox3 regulates alternative splicing of the Rbfox2 pre-mRNA, producing a message encoding a dominant negative form of the Rbfox2 protein. We show here that nuclear Rbfox3 isoforms can also enhance the inclusion of cryptic exons in the Rbfox2 mRNA, resulting in nonsense-mediated decay of the message, thereby contributing to the negative regulation of Rbfox2 by Rbfox3 through a novel mechanism

    β1 Integrin-Mediated Adhesion Signalling Is Essential for Epidermal Progenitor Cell Expansion

    Get PDF
    Background: There is a major discrepancy between the in vitro and in vivo results regarding the role of b1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of b1 integrins suggested that epidermis can form and be maintained in their absence, while in vitro data have shown a fundamental role for these adhesion receptors in stem/progenitor cell expansion and differentiation. Methodology/Principal Findings: To elucidate this discrepancy we generated hypomorphic mice expressing reduced b1 integrin levels on keratinocytes that developed similar, but less severe defects than mice with b1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of b1 integrin expression. A similar phenomenon was observed in aged mice with a complete, skin-specific ablation of the b1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of b1 integrin expressing keratinocytes was even further accelerated in situations of increased keratinocyte proliferation such as wound healing. Conclusions/Significance: These data demonstrate that expression of b1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis

    NeuN/Rbfox3 Nuclear and Cytoplasmic Isoforms Differentially Regulate Alternative Splicing and Nonsense-Mediated Decay of Rbfox2

    Get PDF
    Anti-NeuN (Neuronal Nuclei) is a monoclonal antibody used extensively to specifically detect post-mitotic neurons. Anti-NeuN reactivity is predominantly nuclear; by western it detects multiple bands ranging in molecular weight from 45 kDa to >75 kDa. Expression screening putatively identified R3hdm2 as NeuN; however immunoprecipitation and mass spectrometry of the two major NeuN species at 45–50 kDa identified both as the RNA binding protein Rbfox3 (a member of the Fox family of alternative splicing factors), confirming and extending the identification of the 45 kDa band as Rbfox3 by Kim et al. Mapping of the anti-NeuN reactive epitopes in both R3hdm2 and Rbfox3 reveals a common proline- and glutamine-rich domain that lies at the N-terminus of the Rbfox3 protein. Our data suggests that alternative splicing of the Rbfox3 pre-mRNA itself leads to the production of four protein isoforms that migrate in the 45–50 kDa range, and that one of these splicing choices regulates Rbfox3/NeuN sub-cellular steady-state distribution, through the addition or removal of a short C-terminal extension containing the second half of a bipartite hydrophobic proline-tyrosine nuclear localization signal. Rbfox3 regulates alternative splicing of the Rbfox2 pre-mRNA, producing a message encoding a dominant negative form of the Rbfox2 protein. We show here that nuclear Rbfox3 isoforms can also enhance the inclusion of cryptic exons in the Rbfox2 mRNA, resulting in nonsense-mediated decay of the message, thereby contributing to the negative regulation of Rbfox2 by Rbfox3 through a novel mechanism
    corecore