353 research outputs found

    Frequency and phase locking of laser cavity solitons

    Get PDF
    Self-localized states or dissipative solitons have the freedom of translation in systems with a homogeneous background. When compared to cavity solitons in coherently driven nonlinear optical systems, laser cavity solitons have the additional freedom of the optical phase. We explore the consequences of this additional Goldstone mode and analyse experimentally and numerically frequency and phase locking of laser cavity solitons in a vertical-cavity surface-emitting laser with frequency-selective feedback. Due to growth-related variations of the cavity resonance, the translational symmetry is usually broken in real devices. Pinning to different defects means that separate laser cavity solitons have different frequencies and are mutually incoherent. If two solitons are close to each other, however, their interaction leads to synchronization due to phase and frequency locking with strong similarities to the Adler-scenario of coupled oscillators

    Nouvelle découverte d'empreintes laissées par des dinosaures dans la formation des couches rouges (bassin de Cuzco-Sicuani, Sud du Pérou) : conséquences stratigraphiques et tectoniques

    Get PDF
    La dĂ©couverte d'empreintes laissĂ©es par le dinosaures vers le sommet de la formation des Couches Rouges permet de prĂ©ciser la stratigraphie du Sud du PĂ©rou. La durĂ©e de la sĂ©dimentation continentale du bassin de Cuzco-Sicuani n'excĂ©derait pas 20 Ma (santonien - palĂ©ocĂšne) et non plus 45 Ma, comme cela Ă©tait jusqu'Ă  prĂ©sent admis. Le bassin d'avant-pays de Cuzco-Sicuani est caractĂ©risĂ© par une dĂ©formation synsĂ©dimentaire essentiellement compressive pendant toute la durĂ©e de la sĂ©dimentation des "Couches Rouges". En consĂ©quence, une durĂ©e Ă©quivalente Ă  celle de cette sĂ©dimentation peut ĂȘtre retenue pour ces Ă©vĂ©nements tectoniques qui marquent ici le dĂ©but de la surrection de la chaĂźne andine. La phase pĂ©ruvienne, traditionnellement placĂ©e vers 85 Ma, reprĂ©senterait ainsi le dĂ©but de ces Ă©vĂ©nements tectoniques. (RĂ©sumĂ© d'auteur

    Special Issue on the Economics of Changing Coastal Resources: The Nexus of Food, Energy, and Water Systems

    Get PDF
    Viewed through the perspective of the nexus of food, energy, and water systems, improved management of coastal resources requires enhanced understanding of cross-system and cross-scale interactions and dynamics. The economics of changing coastal resources hinges on increased understanding of complex tradeoffs associated with these complex multisystem and multiscale relationships. How diverse forms of change will affect water quantity and quality as well as food and energy production in coastal areas is not well understood. Coastal resources provide many goods and services and influence markedly the nature of many human communities. In 2010, 43 percent of the US population lived in marine coastal counties (US Census 2012), and from 1960 to 2010, the population of these counties increased by 87 percent, faster than the rest of the United States (62 percent). In addition to serving as attractive settlement locations, coastal areas provide critical ecosystem services, including critical habitat for commercially important species in some cases (Gutman 2007, Kroll et al. 2012, Hales et al. 2014). Abundant natural resource amenities also provide valuable recreation and tourism experiences (Hales et al. 2014). Further, new economic opportunities also exist in coastal areas, with many recent examples of emerging products (Barros et al. 2009), innovative seafood technologies (Ayer and Tyedmers 2009, Bugallo et al. 2013), and potential biomedical compounds of different macroalgae (Shekhar et al. 2012) and bivalves (Newell, Ma, and Doyle 2012)

    Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle

    Get PDF
    Biogeophysical (BGP) and biogeochemical (BGC) effects of land-use and land cover change (LULCC) are separated at the global and regional scales in new interactive CO2 simulations for the 21st century. Results from four earth system models (ESMs) are analyzed for the future RCP8.5 scenario from simulations with and without land-use and land cover change (LULCC), contributing to the Land-Use and Climate, IDentification of robust impacts (LUCID) project. Over the period 2006–2100, LULCC causes the atmospheric CO2 concentration to increase by 12, 22, and 66 ppm in CanESM2, MIROC-ESM, and MPI-ESM-LR, respectively. Statistically significant changes in global near-surface temperature are found in three models with a BGC-induced global mean annual warming between 0.07 and 0.23 K. BGP-induced responses are simulated by three models in areas of intense LULCC of varying sign and magnitude (between −0.47 and 0.10 K). Modifications of the land carbon pool by LULCC are disentangled in accordance with processes that can lead to increases and decreases in this carbon pool. Global land carbon losses due to LULCC are simulated by all models: 218, 57, 35 and 34 Gt C by MPI-ESM-LR, MIROC-ESM, IPSL-CM5A-LR and CanESM2, respectively. On the contrary, the CO2-fertilization effect caused by elevated atmospheric CO2 concentrations due to LULCC leads to a land carbon gain of 39 Gt C in MPI-ESM-LR and is almost negligible in the other models. A substantial part of the spread in models' responses to LULCC is attributed to the differences in implementation of LULCC (e.g., whether pastures or crops are simulated explicitly) and the simulation of specific processes. Simple idealized experiments with clear protocols for implementing LULCC in ESMs are needed to increase the understanding of model responses and the statistical significance of results, especially when analyzing the regional-scale impacts of LULCC

    Afforestation impact on soil temperature in regional climate model simulations over Europe

    Get PDF
    In the context of the first phase of the Coordinated Regional Climate Downscaling Experiment in the European domain (EURO-CORDEX) flagship plot study on Land Use and Climate Across Scales (LUCAS), we investigate the biophysical impact of afforestation on the seasonal cycle of soil temperature over the European continent with an ensemble of 10 regional climate models. For this purpose, each ensemble member performed two idealized land cover experiments in which Europe is covered either by forests or grasslands. The multi-model mean exhibits a reduction of the annual amplitude of soil temperature (AAST) due to afforestation over all European regions, although this is not a robust feature among the models. In the Mediterranean, the spread of simulated AAST response to afforestation is between −4 and +2 ∘C at 1 m below the ground, while in Scandinavia the inter-model spread ranges from −7 to +1 ∘C. We show that the large range in the simulated AAST response is due to the representation of the summertime climate processes and is largely explained by inter-model differences in leaf area index (LAI), surface albedo, cloud fraction and soil moisture, when all combined into a multiple linear regression. The changes in these drivers essentially determine the ratio between the increased radiative energy at surface (due to lower albedo in forests) and the increased sum of turbulent heat fluxes (due to mixing-facilitating characteristics of forests), and consequently decide the changes in soil heating with afforestation in each model. Finally, we pair FLUXNET sites to compare the simulated results with observation-based evidence of the impact of forest on soil temperature. In line with models, observations indicate a summer ground cooling in forested areas compared to open lands. The vast majority of models agree with the sign of the observed reduction in AAST, although with a large variation in the magnitude of changes. Overall, we aspire to emphasize the biophysical effects of afforestation on soil temperature profile with this study, given that changes in the seasonal cycle of soil temperature potentially perturb crucial biochemical processes. Robust knowledge on biophysical impacts of afforestation on soil conditions and its feedbacks on local and regional climate is needed in support of effective land-based climate mitigation and adaption policies

    Deliverable D4/5: Global climatic characteristics, including vegetation and seasonal cycles over Europe, for snapshots over the next 200,000 years. Work Package 2, Simulation of the future evolution of the biosphere system using the hierarchical strategy. Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal (BIOCLIM)

    Full text link
    The aim of the BIOCLIM project is to develop and present techniques that can be used to develop self-consistent patterns of possible future climate changes over the next million years (climate scenarios), and to demonstrate how these climate scenarios can be used in assessments of the long-term safety of nuclear waste repository sites. Within the project, two strategies are implemented to predict climate change. The first is the hierarchical strategy, in which a hierarchy of climate models is used to investigate the evolution of climate over the period of interest. These models vary from very simple 2-D and threshold models, which simulate interactions between only a few aspects of the earth system, through general circulation models (GCMs) and vegetation models, which simulate in great detail the dynamics and physics of the atmosphere, ocean, and biosphere, to regional models, which focus in particular on the European region and the specific areas of interest. The second strategy is the integrated strategy, in which intermediate complexity climate models are developed, and used to consecutively simulate the development of the earth system over many millennia. Although these models are relatively simple compared to a GCM, they are more advanced than 2D models, and do include physical descriptions of the biosphere, cryosphere, atmosphere and ocean. This deliverable, D4/5, focuses on the hierarchical strategy, and in particular the GCM and vegetation model simulation of possible future climates. Deliverable D3 documented the first step in this strategy. The Louvain-la-Neuve 2-D climate model (LLN-2D) was used to estimate (among other variables) annual mean temperatures and ice volume in the Northern Hemisphere over the next 1 million years. It was driven by the calculated evolution of orbital parameters, and plausible scenarios of CO2 concentration. From the results, 3 future time periods within the next 200,000 years were identified as being extreme, that is either significantly warmer or cooler than the present. The next stage in the hierarchical strategy was to use a GCM and biosphere model, to simulate in more detail these extreme time periods
    • 

    corecore