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Frequency and Phase Locking of Laser
Cavity Solitons

T. Ackemann, Y. Noblet, P. V. Paulau, C. McIntyre, P. Colet,
W. J. Firth and G. -L. Oppo

Abstract Self-localized states or dissipative solitons have the freedom of translation
in systems with a homogeneous background. When compared to cavity solitons in
coherently driven nonlinear optical systems, laser cavity solitons have the additional
freedom of the optical phase. We explore the consequences of this additional
Goldstone mode and analyze experimentally and numerically frequency and phase
locking of laser cavity solitons in a vertical-cavity surface-emitting laser with
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frequency-selective feedback. Due to growth-related variations of the cavity reso-
nance, the translational symmetry is usually broken in real devices. Pinning to different
defects means that separate laser cavity solitons have different frequencies and are
mutually incoherent. If two solitons are close to each other, however, their interaction
leads to synchronization due to phase and frequency locking with strong similarities to
the Adler-scenario of coupled oscillators.

1 Introduction

Lasers are a prominent example for self-sustained nonlinear oscillators. The phase
of the oscillation of the electromagnetic field is not determined but results from the
spontaneous breaking of the time symmetry present for cw pumping. Hence, the
phase is a Goldstone mode of the dynamics and couples easily to perturbations,
such as, for example, spontaneous emission. As a result of the induced ‘phase
diffusion’ [1], a laser has a finite linewidth (Schalow–Townes limit) and the
mutual coherence between two independent lasers will be limited even if they have
the same center frequency. Hence a lot of attention has been given to the phe-
nomena of frequency and phase locking, by which coupled lasers can synchronize
their frequency and phases to achieve coherent emission [2–5]. Laser synchroni-
zation is just a special example of synchronization dynamics of coupled oscilla-
tors, which is of high importance in all fields of Nonlinear Science [6, 7], the
earliest example being the famous observation made by Christiaan Huygens on
two pendulum clocks. A very well known biological example involving a large
number of oscillators is the synchronized flashing of fireflies [6, 7].

In photonics, frequency and phase locking has particular relevance for laser
injection [8, 9] and in laser arrays where it can establish coherence between
individual emitters even in the presence of disorder [10–12], i.e. an unintentional
variation of the frequencies of the free-running emitters forming the array. Phase-
locking of disorder-induced localized modes was observed in microchip
lasers [13]. Synchronization of chaotic lasers has promises for secure communi-
cation [14–17].

One other object of fundamental importance in different areas of Nonlinear
Science is the soliton [18–20], i.e. a nonlinearly self-localized state in one or more
dimensions in a conservative or dissipative system. As a self-localized state it can
exist anywhere in a translationally invariant system. Hence, laser solitons [21, 22]
have the freedom of translation in an ideally homogeneous system typical of
solitary waves as well as the freedom to choose the oscillation phase typical of
lasers. Both are Goldstone modes of the dynamics. Their interplay involves aspects
of synchronization dynamics and of soliton interaction. Dissipative solitons in
coherently driven optical systems [23] (Fig. 1a)—i.e. without the phase degree of
freedom—display a peculiar interaction behavior with a set of bound states with
different, discrete distances between constituents [24–27], which is also typical of
many non-optical systems [28], and is related to modulated tails of the solitons.
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Propagation solitons in conservative system like the Nonlinear Schrödinger
equation show phase-sensitive interaction behavior (attraction for zero relative
phase, repulsion for p relative phase) [18]. In the present case of a soliton laser,
phase and location are both dynamical variables.

As a consequence of synchronization and interaction, phase-locked bound
states with well defined phases and distances of the constituent laser solitons have
been predicted to form in simple model systems like the cubic-quintic Ginzburg–
Landau equation (CQGLE) [29–36]. These works concentrate on one-dimensional
dissipative solitons being motivated by temporal solitons in mode-locked lasers
(Fig. 1d). Indeed corresponding bound states were observed experimentally in
fiber lasers [26, 37–39]. A recent review of these phenomena is in [40].

Until recently the spatial case had been addressed only theoretically in lasers
with saturable absorbers (LSA) (Fig. 1c) [21, 41, 42]. Early experiments on sol-
itons in LSA using dyes and photorefractives as gain medium were limited to one
soliton due to specific cavity geometries [43–45]. Later investigations in a
photorefractive oscillator found multiple spatial laser solitons but did not inves-
tigate the interaction and phase properties [46]. Recently, there has been strong
progress in the realization of spatial laser solitons in semiconductor-based micro-
resonators with frequency-selective feedback [47–52] and saturable absorption
[42, 53–56]. In these systems, a broad transverse area (transverse indicates the
plane orthogonal to the cavity axis) is pumped in a marginally stable plano-planar
cavity. Emission does not take place over the whole aperture but on filaments
which are much smaller than the pumped aperture. These filaments are dissipative
solitons. We will refer to them as laser cavity solitons (LCS) and to the device as a
cavity soliton laser (CSL). Recent reviews are in [57, 58].

Fig. 1 Optical schemes displaying dissipative solitons. Panels a–c illustrate different schemes
for spatial solitons where the gain cavity is short to achieve a high Fresnel number or aspect
ratio (ideally single longitudinal mode, for simplicity and the validity of an uniform field
approximation), whereas scheme d illustrates a scheme for temporal solitons as, e.g., a fiber laser,
where the cavity is long and highly multi-longitudinal mode. SA saturable absorber, FSF
frequency selective feedback, thick black lines: cavity mirrors, dashed lines: partial reflectors (in
scheme c the partial reflector is not mandatory but present in many experimental realizations). In
panel a, illustrating an amplifier (or a driven passive cavity), the phase symmetry is broken due to
an external coherent field

Frequency and Phase Locking of Laser Cavity Solitons 51



LCS represent small coherent emitters, i.e. microlasers [47, 49]. Spatially
separated LCS are usually found to be incoherent in experiments [49, 59]. This is
due to uncontrolled fluctuations in the expitaxial growth process, which cause a
variation of resonance conditions across the pumped aperture of the device. Since
translation is a Goldstone mode of a soliton, it will couple to all spatially inho-
mogeneous perturbations and the soliton will move until it reaches a local extre-
mum of the perturbation, where the gradient vanishes [60, 61]. This leads first to a
pinning of the solitons at certain positions generally referred as either traps or
defects. This was investigated in detail in coherently driven semiconductor
microcavities [62, 63] (Fig. 1a). More recently, frequency-selective feedback
(Fig. 1b) to a laser device was shown to provide simple means for mapping these
variations [64].

Background defects in lasers not only fix LCS position but also induce a shift in
the LCS natural frequency. Recently it was shown that this diversity in natural
frequencies among LCS pinned by defects is a critical ingredient in the description
of their interaction and synchronization in real systems, leading to a scenario quite
different from the CQGLE on a homogenous background [65]. Reference [65]—
which we review and extend here—presents experimental and theoretical evidence
that the interaction of spatial LCS in real lasers is governed by the archetypal
Adler locking mechanism [66]. The Adler locking mechanism has relevance in
biological clocks, chemical reactions, mechanical and electrical oscillators [6]. In
optics frequency locking of the Adler type was first observed in lasers with
injected signals [9] with more recent generalizations to coupled lasers [4], the
spatio-temporal domain [67], quantum dot lasers [68] and frequency without phase
locking [69].

We note that for temporal LCS, such as those arising in fiber lasers [26, 37, 38]
and driven fiber cavities [70, 71], the effects of longitudinal inhomogeneities are
washed out by the propagation dynamics along the cavity axis (see Fig. 1d). Thus
every soliton sees the same material characteristics [72]. Hence, theoretical studies
considering the interaction of identical LCS arising on a homogeneous background
seem to be suitable for temporal LCS, but are not adequate to describe the
dynamics of coupled spatial LCS. Temporal solitons would be affected by
copropagating inhomogeneities [73, 74] which can be induced by modulating laser
parameters [75–78]. These regular parameter modulations were shown to have a
substantial effect on the phase-locked bound states but do not induce frequency
detunings between solitons when these are assembling at the minima of the
potential. Hence the relevance of frequency and phase locking and the Adler
scenario was not addressed in these works.

The organization of this book chapter is as follow. In the next section, Sect. 2,
we introduce the experimental system, a vertical-cavity surface-emitting laser
(VCSEL) coupled to a volume Bragg grating (VBG) as a frequency-selective
element (Fig. 1b). We review basic features and observations in this system and
then provide evidence and a detailed analysis of frequency and phase locking.
From a dynamical point of view, VCSELS can be considered as Class B lasers
characterized by the fact that the dynamics can be described in terms of the
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complex optical field and population inversion while the material dielectric
polarization can be adiabatically eliminated. For a theoretical and numerical
description of the system, we discuss in Sect. 3 a class B-laser model [52]. This
model is simplified afterwards to a complex equation for the optical field alone,
which is a Ginzburg–Landau equation with an additional linear filter (GLE-F)
[79, 80] and provides the simplest framework to understand the observed
dynamics. In Sect. 4 we study first the interaction of LCS on a homogeneous
background in the GLE-F and find a close correspondence to the results predicted
by the CQGLE. We will see that some of the LCS interaction properties on a
homogeneous background are significantly modified in the class-B model that
works for more realistic parameters. Then, in Sect. 5, we investigate the case of
LCS interaction in the presence of inhomogeneities, describe the resulting Adler-
synchronization for both models and compare the results to experiments. Section 6
provides then a final discussion and outlook.

2 Laser Cavity Solitons and Their Interactions in VCSELs
with Feedback

2.1 Devices and Experimental Setup

A vertical-cavity surface-emitting laser (VCSEL) is a semiconductor laser in
which the emission is in the direction of the epitaxial growth (see Fig. 2a). The
VCSEL used for this experiment is similar to the ones described in more detail in
[49, 81–83]. Three InGaAs quantum wells are serving as gain medium leading to
emission in the 980 nm range. The quantum wells are surrounded by passive
AlGaAs spacer layers with a total thickness of one wavelength. The cavity is
closed by high reflectivity distributed Bragg reflectors (DBR) with 33 layers
AlGaAs/GaAs on the top side (p-contact) and 22 layers on the bottom side
(n-contact). The emission takes place through the n-doped Bragg reflector and
through the transparent substrate. In this so-called bottom-emitting geometry a
reasonable uniformity of carrier injection can be achieved over fairly large aper-
tures [81, 82]. A 200 lm diameter circular oxide aperture provides optical and
current guiding. This active diameter is much larger than the effective cavity
length of about 1.2 lm. As a result, the VCSEL has a large Fresnel number
allowing for the formation of many transverse cavity modes of fairly high order.

The laser has an emission wavelength around 975 nm at room temperature.
Frequency-selective feedback is provided by an external volume Bragg grating
(VBG). The VBG has a reflection peak at kg ¼ 981:1 nm with a reflection
bandwidth of 0:2 nm full-width half-maximum (FWHM). The VCSEL is tuned in
temperature up to 70 �C so that the emission wavelength approaches the reflection
peak of the VBG. At such a high temperature the free running laser has an infinite
threshold and lasing only occurs because of the feedback from the VBG.
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Fig. 2 a Schematic diagram of VCSEL layer structure (from [84]). b Near field image of the
VCSEL aperture taken at 396 mA showing the relative position and numbering of a few solitons.
Output VCSEL images, like all in the following, are in a linear gray scale with black denoting
high intensity

Fig. 3 Experimental setup. VCSEL Vertical-cavity surface-emitting laser, BS Beam splitter,
VBG Volume Bragg grating, HWP Half wave plate, A Aperture, M Mirror, PD Photo diode,
CCD1 CCD camera in near field image plane of VCSEL, CCD2 CCD camera in far field image
plane of VCSEL, FP Fabry–Perot
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A schematic diagram of the experimental setup is illustrated in Fig. 3. The
VCSEL is coupled to the VBG via a self-imaging external cavity. Every point of
the VCSEL is imaged at the same spatial position after each round trip therefore
maintaining the high Fresnel number of the VCSEL cavity and ensuring local
feedback compatible with self-localization.

The VCSEL is collimated by f1 ¼ 8 mm focal length plano-convex aspheric
lens. The second lens is a f2 ¼ 50 mm focal length plano-convex lens and is used
to focus the light onto the VBG. This telescope setup gives a 6:25:1 magnification
factor onto the VBG. This cavity has a round trip frequency of 1:23 GHz which
corresponds to a round trip time of 0:81 ns. The light is coupled out of the cavity
using a glass plate (beam splitter with a front uncoated facet and a back anti-
reflection coated facet). The reflection is relying on Fresnel reflection and therefore
is polarization dependent. The reflectivity is on the order of 10 % for s-polarized
light and 1 % for p-polarized light.

An optical isolator is used to prevent reflection from the detection system to
pass into the external cavity. There are two charge-coupled-device (CCD) cameras
used for detection, one is used to produce images of the VCSEL emission in the
gain region (near field) and the other camera produces images of the Fourier plane
of the gain region (far field). The optical spectrum is recorded with a scanning
Fabry–Perot interferometer (FP). It has free spectral range (FSR) of 10 GHz and a
maximal Finesse of 80. There is also a photodiode which measures the total laser
power.

As it will be discussed in more detail in the following, the precise alignment of
the VBG is very important. It is controlled by fine adjustment screws. The tilt b
(see Fig. 4) in the horizontal direction can be fine-adjusted by a piezo-electric
transducer (PZT), which is stabilized against drift by a servo-loop controlled by a
strain gauge. A computer-controlled voltage U applied to the PZT leads to a tilt of
db=dU ¼ 2:1� 10�5=V, a change of the external cavity length at a rate of
dL=dU ¼ 0:628 lm/V, and a change of the resonance frequency in the external
cavity by dm=dU ¼ 1:576 GHz/V. Perhaps even more importantly for what fol-
lows, there is also a differential shift for two LCS. If their distance projected onto a
plane orthogonal to the rotation axis is Dx, this shift is

Dm ¼ Dx
2mFSR sin b

k
; ð1Þ

where mFSR is the free spectral range of the external cavity and k the operating
wavelength of the VCSEL. The change of the ray angle after returning to the
VCSEL (corrected for the magnification of the telescope) is h ¼ b M.

The adjustment of the self-imaging condition is described in detail in [85]. The
distance between the VCSEL and the collimating lens can be adjusted for best
collimation, while the distance between the focusing lens and the VBG is selected
by adjusting the images of the VCSEL emission at high current for maximum
sharpness of the aperture. For the distance between the two lenses there is no
simple alignment criterion, hence it needs to be set from the lens specifications
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taking the dispersion data of the lenses into account. Then it can be checked by
measuring dispersion curves of the off-axis states above threshold [85]. After
optimization we estimate to be within �0:2 mm of the self-imaging condition with
a reasonable depth of focus [85].

2.2 Basic Properties of Laser Cavity Solitons

When increasing the VCSEL input current, LCS appear at specific spatial loca-
tions. The first lasing emission occurs at currents of about 360–380 mA, depending
on the exact temperature and alignment of the VBG. Figure 2b shows a typical
near field intensity distribution slightly above threshold. There are several distinct
spots of emission, which are approximately circularly symmetric and approxi-
mately equal in amplitude and shape. These are the LCS. The size of a LCS is
about 5–7 lm (1=e2-radius). The far field has also a single-lobe, well-behaved
profile with a width of a few 10 s of mrad [49], i.e. the LCS have a high spatial
coherence. The emission is also temporally coherent with a typical linewidth of
about 6 MHz when operating on a single longitudinal mode of the external cavity
[49], quite a typical value for grating-controlled lasers on millisecond and second
time scales. Hence each LCS is a coherent emitter, a micro-laser. We will discuss
the mutual coherence of LCS below. For increasing current, a soliton typically
splits into a compound state with two humps, and then possibly three or four,
followed by disordered extended states. Evidence for these states, stemming from
the LCS with the lowest threshold, is visible in the lower right part of the aperture
in Fig. 2b. Details on the LCS and pattern evolution beyond threshold can be
found in [49, 85].

The appearance of each LCS is abrupt and we observe hysteresis when the
current is ramped up and down, i.e., each LCS shows bistability. Figure 5 illus-
trates this phenomena for two sample LCS shown in the corresponding inset. The

Fig. 4 Scheme of VCSEL
cavity carrying two LCS with
feedback from a tilted VBG.
The tilt angle b of the VBG
controls the mutual detuning
of the two LCS (see text for
details). The pivot point is
much further away from the
optical axis in reality (about
30 mm)
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right one switches on abruptly at about 379.5 mA, the left one only slightly later at
about 381 mA. If the current is decreased again, the latter survives till about
376 mA, the former till 372.5 mA. In between 376 and 379.5 mA the two LCS are
simultaneously and individually bistable, i.e. they can be independently switched
on and off by an external writing pulse [47–49]. This represent a 2-bit memory,
which is interesting for optical information processing when extended to more
channels that can provide the potential for massive parallelism in broad-area
VCSELs. The details of this hysteresis loops are different for different LCS and
also depend on alignment. Typically switch-on occurs to the single-humped fun-
damental LCS as demonstrated in Fig. 5. Corresponding scenarios are described in
[47–49, 86], but a direct transition to multi-humped and ring-shaped states is also
possible for, e.g., solitons 1 and 2. The experiments described later in Sect. 2.3 are
performed at a bias current at which two fundamental, single-humped LCS are
individually bistable.

The mechanism for the bistability is the following [48, 85, 87, 88]. Initially, the
longitudinal resonance of the cavity is blue-detuned to (at higher frequency than)
the grating frequency (the reflection peak of the grating). Hence there is a fre-
quency gap, in which no linear state exists. The gain is below the value where
lasing without the help of the feedback from the grating is possible. Increasing the
current leads to an increase of Ohmic dissipation and hence to a temperature rise in
the laser structure. This results in an increase of the refractive index and hence in a
red-shift of the cavity resonance. This shift is around 0:0035 nm/mA. Let’s assume
now a fluctuation leading to an increase in output power. Due to stimulated
emission, the carrier density is decreased and this increases the refractive index
due to phase-amplitude coupling in semiconductors, described phenomenologi-
cally by Henry’s alpha-factor [89]. This red-shifts the cavity resonance and hence
the detuning between VCSEL and VBG decreases. As a result, the feedback
strength increases and the intensity will increase ever further leading to positive
feedback. At a certain critical detuning, the positive feedback is strong enough to

Fig. 5 Light-current (LI)
curve for two sample LCS
(shown in inset). The solid
line refers to increasing
current and the dashed line to
decreasing current.
Measurements taken at
0.1 mA intervals at a rate of
1 mA per second to avoid
thermal hysteresis
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cause an abrupt switch-on of the laser. After switch-on, the laser can self-sustain
the condition of the near-resonance between the (shifted) cavity resonance and the
VBG in the high-amplitude emission state due to the continuous depletion of
carriers and the resulting refractive index shift even if the current is reduced again,
resulting in a bistable situation. Bistability due to shifts of cavity resonances is
usually referred to as dispersive optical bistability [90].

In a spatially extended system, the whole aperture might switch to the high-
amplitude state, but it turns out that this state is unstable, or at least that there is the
coexisting possibility of localized emission, the LCS [51, 52]. An intuitive
mechanism to understand the drive for localization is self-lensing, as indicated in
Fig. 4. A self-induced lens can render the marginally stable plano-planar resonator
locally stable and lead to a self-induced nonlinear mode, the LCS [25, 91]. It is
important to realize that under our typical operating conditions the main effect of
the change of the control parameter ‘current’ (see e.g. Fig. 5) is the change of the
detuning condition and not the gain change. This is further evidenced by the fact
that a decrease of the ambient temperature of the VCSEL leads to an increase in
threshold current. Since the gain at constant current increases in a semiconductor
with decreasing temperature, this indicates that the main function of the increased
current is to provide the larger detuning shift required at lower temperature. The
system with feedback by a normal mirror lases already at about 180 mA [85],
demonstrating that ample gain is available.

The reason for the difference in threshold for the different solitons as well as for
the preference of certain locations lies in growth irregularities of the semicon-
ductor material. If the cavity resonance of the VCSEL is spatially varying, the
linear gap between the grating frequency and the cavity resonance is changing in
space and a minimum value of the detuning for switch-on is met at different
locations at different injection currents. Hence the lasing will start first at the most
‘reddish’ location with the smallest gap. With increasing currents more locations
reach the critical detuning value and additional LCS switch on, whereas the LCS
formed originally may give way to high-order compound states and extended, off-
axis lasing states [64, 85]. Typical length scales of disorder are about 10 lm and
they span some tens of GHz [64] in line with the results from other devices in the
literature [63, 92, 93]. A simple calculation shows that a monolayer variation of
DL � 0:3 nm corresponds to a frequency variation of Dm � 76 GHz. Similar
results are obtained with more accurate models of the multi-layer stacks forming a
VCSEL [94, 95]. Since the cavity linewidth of a low-loss VCSEL is about 0.1 nm
or 30 GHz (depending on the actual free-carrier and scattering losses), this
explains the extreme sensitivity of the feedback light distribution to disorder.

As explained in the introduction, LCS will couple to parameter variations and
drift [60, 61] until they either disappear from the system or reach a point in which
all first order perturbations, i.e. gradients, vanish at a local extremum of the
‘landscape’ imposed by the variations. These preferred locations are the ones
where we find LCS in Fig. 2b. We will refer to them as traps or defects. This
disordered ‘landscape’ is frozen after the growth process of the semiconductor
structure although some minor external influence on the position of the LCS is
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possible by alignment changes in the external cavity. In particular, a tilt of the
VBG induces a tilt of the wavefront of the returning beam, which should lead to
continuous drift of the LCS in a homogeneous system. For a LCS in a trap, the tilt
shifts the position where the potential minimum of the combined perturbation
(frozen disorder plus tilt) lies and hence the LCS shifts to a new equilibrium
position (see [49] for images). As the quantitative analysis in Fig. 6a shows, this
shift is quite small. It should be noted also that the tilt is minute, about 0.15 mrad
total, leading to a change of ray angle at the VCSEL smaller than 1 mrad, much
smaller than, e.g., the angular width of a LCS. The shift within the trap is also
different for different solitons, which is expected for a disordered system because
the curvature of the potential should vary randomly from trap to trap. At some
critical tilt angle (larger than typically achievable with the PZT), the LCS disap-
pears. The expectation is that the potential minimum disappears for a critical tilt
and the LCS unpins and starts to drift. A corresponding transition between drifting
and pinned patterns was found in [96]. In our system, an experimental investi-
gation of the unpinning phenomenon requires simultaneous spatial and temporal
resolution and has not been undertaken, yet.

In conclusion, bistable emission spots with high temporal and spatial coherence
emerge at the threshold of a VCSEL with frequency-selective feedback. Although
their position is affected by the disordered landscape due to the variations of the
cavity resonance, these spots maintain rotational symmetry and a common spatial
shape and width, i.e. their shape seems to be dominated by the nonlinear process.
Theoretical results discussed below confirm the existence of self-localized LCS for
realistic parameter values. Hence these spots are identified as LCS. The spatial
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Fig. 6 a (Color online) Peak position of the near field profile as a function of the tilt angle for
LCS 1 (red curve, gray in print) and 2 (black curve); b Peak position of the far field profile as a
function of the tilt angle. The curves are averaged over two runs and most of the undulations are
likely to stem from measurement noise, although a deterministic contribution due to small-scale
disorder within the trap cannot be ruled out. The zero of the y-axis in panel b is set at the center of
the two individual angular centres of the far fields of LCS 1 and 2. For a better comparison with
the results presented below the horizontal axis is scaled in the change of differential detuning
between the two LCS in the external cavity as obtained from Eq. (1). The total tilt is 0.15 mrad
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fluctuation of the cavity resonance condition, however, pins LCS to certain
locations and leads to a dispersion of thresholds and operating frequencies. Each of
these LCS is a coherent emitter but they are mutually incoherent due to the spatial
disorder of the background [49, 59, 65].

2.3 Phase Locking of Laser Cavity Solitons Via Change
of Current

Investigation of LCS interactions were done on pairs of different LCS. We report
here results on LCS with a separation distance of 49 (LCS 3 and 4) and 79 lm
(LCS 1 and 2). The qualitative features of the observations are robust, but the
details can vary a fair amount as one would expect since parameters are affected by
spatial disorder. We stress that we are only looking at LCS in different traps. The
coherence properties of compound, high-order states of LCS in the same trap are a
separate issue and more detailed investigation are needed in our system. For the
LSA some results are in [59, 86].

Two spatially separated LCS are typically incoherent. Then their combined far
field is the incoherent sum of the intensity distributions of the two solitons. Under
certain conditions (explained in detail below), this changes drastically and a
pronounced fringe pattern is visible across the far field intensity profile
(Fig. 7c, d). Its wavevector is parallel to the connection line between the two
solitons, i.e. the fringes are orthogonal to it. This far-field fringe pattern is stable
for longer than the exposure time of the CCD (20 ms), typically it can be observed
for minutes to hours, once achieved. This evidences phase-coherence between the
two LCS over time spans orders of magnitude higher than the intrinsic dynamics
(nanoseconds) and also higher than typical time scales of technical noise
(microseconds to seconds). A cut through the fringe pattern is taken across the
center of the far field intensity. Then a Gaussian profile modulated by a sine-wave
is fitted to this cut,

y ¼ y0 þ A exp
�ðh� h0Þ2

2w2

" #
1þM sinðFðh� h0Þ þ PÞ

1þM

� �
: ð2Þ

Here y0 is the offset, A is the amplitude, h0 is the peak center, w is the width, M is
the modulation depth or fringe visibility, F is the frequency of the sine modulation
and P its phase.

Figure 7a, b show the locking behavior of LCS 1 and 2 during an upward scan of
the current. The dominant features of the spectra in Fig. 7b are multi-frequency
emission and the common red-shift of all modes due to the Ohmic heating discussed
earlier. This shift is about 0.44 GHz/mA, about half the value of the free-running
laser. This is expected because the grating stabilizes the emission frequency [85,
87]. At low current the LCS emit on two or three different external cavity modes
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which corresponds to a fringe visibility close to 0.5. This indicates that the LCS
operate on different external cavity modes but share side-bands, i.e. each LCS is
not single-mode. Then, as the current is increased, the fringe visibility increases
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Fig. 7 a (Color online)
Fringe visibility (black) and
fringe phase (green curves,
gray in print) as a function of
current for LCS 1 and 2,
79 lm apart. The zero of the
current scale corresponds to a
current of 380 mA. The
fringe visibility and phase are
obtained from a fit of far field
profiles to Eq. (2).
b Evolution of frequencies;
the frequency distribution is
obtained from the optical
spectra recorded by a Fabry–
Perot with a FSR of 10 GHz.
The frequency separation
between side modes
corresponds to the free
spectral range of the external
cavity (1.23 GHz). In these
measurements, the Finesse is
only 25 due to misalignment
(frequency resolution
400 MHz). c Far field
intensity distribution at
380 mA corresponding to a
fringe visibility of 0.55. d Far
field intensity distribution at
385.5 mA corresponding to a
fringe visibility of 0.95. Other
parameter: Temperature
69 �C
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abruptly to reach up to 0.95. At this point, only one spectral line is strongly
dominant and both LCS occupy the same external cavity mode and are then
strongly frequency and phase locked. Increasing the current further leads to a jump
of one LCS to an adjacent external cavity mode inducing a drop in fringe visibility
back to 0.5. A similar scenario with a transition to nearly complete locking occurs at
the end and high visibility is reached again. Beyond this point, a third LCS switches
on in the detection area thus complicating the interpretation of the results.

From the Fourier theorems, a field distribution shifted by a distance a in the
near field acquires a phase-shift of exp ðik?aÞ in far field. Hence a, the separation
of the interference source (here the LCS) in near field and the fringe period
Dh ¼ 2p=F are related by

a ¼ k
Dh

: ð3Þ

For a far field fringe spacing of 12.6 mrad obtained from the fit one obtains a near
field separation of 77.8 lm which agrees very well with the measured LCS sep-
aration of 79 lm thus confirming that the interference comes from the two
interacting LCS.

From Fig. 7a it is apparent that the fringe phase fluctuates around a value
smaller than p. As we will discuss below, a locking phase of p is typical for two
coupled oscillators without detuning while a non-zero detuning changes the
locking phase away from p. The current induced heating is a global parameter and
hence it should not change the detuning condition between the two LCS in the
VCSEL cavity, in line with the fact that the locking phase is not varying by much.
The operating frequency of the solitons, however, is a compromise between the
VCSEL cavity resonance and the external cavity resonance leading to a tran-
scendent equation for the operating frequency [97] (see (A.3) of [87] for a VCSEL
with FSF). With an initial, position dependent offset, a global shift of the VCSEL
resonance conditions can result in a change of relative stability and frequency of
the modes of the coupled cavity system (e.g. a destabilization of an external cavity
mode for one LCS but not for the other), leading to the possibility of a non-
synchronous evolution of soliton frequencies and locking or unlocking. In addi-
tion, there might be small local variations either in gain or cavity resonance
because the current induced temperature shift is only nominally homogeneous.
These considerations indicate that the global parameter ‘current’ is not a good
handle to investigate the locking behavior, but one should look for a ‘local knob’.

2.4 Phase and Frequency Locking of Laser Cavity Solitons
Via Change of Feedback Phase

Since it is experimentally difficult to change the detuning of two LCS by locally
changing the properties of the VCSEL itself, the PZT is used to minutely tilt the
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VBG of the external cavity with respect to the optical axis (Fig. 4). As indicated
by Eq. (1) this induces a difference in external cavity length DL for the two
solitons therefore leading to a difference of feedback phase and detuning in the
external cavity. It is then possible to adjust the frequency difference (i.e. the
detuning) between two LCS. Indeed, the locking discussed in the previous section
was achieved by aligning the VBG such that a high fringe visibility was obtained
for some current (2 or 4.5 mA). This follows the procedure used to control the
detuning of coupled solid-state lasers, see [4, 5], but with the additional complication
of coupled cavity effects due to the high reflectivity of the VCSEL outcoupling
mirror, whereas the gain chip in the solid-state lasers is typically anti-reflection
coated.

As indicated before, the tilts are actually quite small and it turns out that the
soliton profiles are essentially unaffected. The width of the near field is constant
within 0.3 lm (variation � 5 % of a single soliton width) and the width of the far
field profiles to within 1.5 mrad (6 % of a single soliton width). When tilting the
VBG both near and far field profiles of the LCS are not affected while the positions
are. As discussed in conjunction with Fig. 6, the positions and beam pointing of
the LCS change slightly in the trap, but the changes are small and the differential
changes are even smaller. Hence, it seems reasonable to assume that the dominant
effect of the tilt is indeed the change of differential feedback phase.

When tilting the VBG a region of phase and frequency locking appears as
illustrated in Fig. 8a, c by a range of high fringe visibility in the far field. This
region of high fringe visibility can last for seconds to hours depending on
parameters. It confirms that locking is a robust feature once achieved by a fine
alignment of the VBG. We note that the choice to start the x-axis displaying the
detuning parameter with zero is arbitrary. If one considers the locking-dynamics, it
would be reasonable to expect that the zero lies at the center of the locking region.
However, as the fringe phase is only approximately symmetric with respect to the
center of the locking range and the details of the underlying dynamics are
unknown, the position of the zero is somewhat ill-defined and no adjustments were
made. Such cautious choice comes at the expense of a slightly awkward labelling:
whereas the real detuning decreases in the left half (roughly) of the figure and
increases in the right half, the detuning parameter chosen increases all along the
x-axis. As qualitatively apparent from Fig. 8c, the fringes shift with detuning
within the locking region (within a fringe visibility higher than 0.5), i.e. the
locking phase changes. The quantitative analysis in Fig. 8a indicates that this
variation is nearly linear over most of the range. The width of the locking range is
close to p. If the direction of the scan of the tilt is reversed (see green dashed line
in panel a) the locking phase shadows the one obtained in the up-scan, i.e. there is
no discernible hysteresis. As we will discuss in the theoretical sections, these
features are fingerprints of the Adler locking. The noise of the fringe phase is
considerably smaller in the region corresponding to complete locking than in the
partially locked regions. For even larger tilts (not achievable with the PZT), the
two LCS are completely unlocked and their phases random. Modulations depths of
about 5 % are due to noise in the images.
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The transitions to and from frequency and phase locking are rather abrupt and
one might expect hysteresis at their onset. Due to the mechanical scanning, there is
some jitter of the transition point. Hence only one sweep is shown in Fig. 8a and
we are currently not in a position to investigate possible hysteresis systematically.
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Fig. 8 a (Color online)
Fringe visibility (black) and
fringe phase (green curves,
gray in print) as a function of
the tilt angle that changes the
difference between the
feedback phases for LCS 1
and 2, 79 lm apart. This
difference is converted to a
frequency scale by
multiplying it by the free
spectral range of the external
cavity thus providing the
change of the relative
detuning between the two
LCS in the external cavity.
The zero of this detuning
scale is arbitrary. The solid
and dashed green curves are
obtained for scanning the tilt
back and forth. b Evolution
of frequencies, the frequency
distribution is obtained from
the optical spectra recorded
by the FP (Finesse 80). c Cut
through far field intensity
distribution orthogonal to
fringe orientation. Other
parameters: Temperature
69 �C, current I ¼ 373 mA
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Panel b of Fig. 8 illustrates the evolution of the frequencies of LCS in optical
spectra. The first obvious feature is that all spectral lines are shifted due to the tilt
of the VBG. The Finesse of the FP is 80, hence the frequency resolution is only
about 130 MHz. This means that the differential frequency shift of the two LCS
cannot be resolved (it is in total about 30 MHz), but only inferred from its indirect
effect via stabilization and destabilization of external cavity modes and the
resulting possibility of locking and unlocking. When comparing panel b to panels a
and c one observes that when the fringe visibility is high, the two LCS operate on a
single frequency (region within dashed lines in panel b).

There is a jump in the common operation frequency of the LCS by one FSR
slightly after 15 GHz, where the fringe visibility is nearly maintained. It drops from
0.9–1 to 0.8–0.9. This indicates that the two LCS do a common mode jump retaining
phase and frequency locking, though at this point there is a change of behavior in the
phase evolution (green solid line in Fig. 8a); it becomes essentially flat.

Outside the locking region the two LCS operate on two different external cavity
modes (with a frequency separation of 1.23 GHz between two adjacent modes). In
this region the fringe visibility is rather low (below 0.25) and the locking is very
weak. Some residual coupling via side-modes is probably responsible for this
residual partial locking. As indicated, for higher tilts, the visibility drops to a
background given by noise on the order of 5 % or less.

Although the transition from locking to unlocking seems to be accompanied by
a transition between a one-frequency to a two-frequency spectrum, there are other
regions in which the spectrum appears to be predominantly single-humped (pos-
sibly with weak side-modes) but with low fringe visibility. A close inspection
however shows that the spectral line is wider there than in the central locking
range, by around 45–55 % in the region between 2 and 6 MHz detuning, and by
27 % in the region at 19.5–20.5 MHz (close to the locking range). This indicates
that the two LCS are operating close in frequency so that the difference cannot be
resolved within the limited resolution of the FP (about 130 MHz). There is a third
region around 26 MHz, where the spectral line seems to be slightly, but not
significantly broader, and we conjecture that the frequency difference is below the
resolution there.

The basic features of the scenario described for LCS 1 and 2 (79 lm apart) are
also typical for other distances and other pairs of LCS. Fig. 9 shows phase and
frequency locking for LCS 3 and 4, which are 49 lm apart. In this case we observe
a far field fringe spacing of 19.1 mrad which corresponds to a near field separation
of 51.3 lm. It again agrees well with the measured LCS separation of 49 lm.
Again, there is a region of nearly complete locking with a high fringe visibility.
The phase (within the locking region) is centred around p and varies linearly with
the detuning from 0.6p to 1.4p (green curve in panel a, see also panel c). The
locking-unlocking transition is accompanied by a transition between a single-
frequency and a two-frequency regime. Around a detuning of 4 MHz, the transi-
tion leads to a single locked state with a visibility of 0.7 dominated by a single
mode, although weak side-modes are still present in the spectrum, the latter dis-
appearing with a further increase of the visibility to the 0.9 level. As in Fig. 8b, the
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LCS perform a common mode-hop within the locking region (around 7.5 MHz
detuning), but remain locked. In contrast to the previous case, the phase evolution
is not perturbed, i.e. the phase continues to grow approximately linearly. This
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Fig. 9 a (Color online)
Fringe visibility (black) and
fringe phase (green curve,
gray in print) as a function of
the tilt angle that changes the
difference between the
feedback phases for LCS 3
and 4, 49 lm apart. The zero
of this detuning scale is
arbitrary. b Evolution of
frequencies, the frequency
distribution is obtained from
the optical spectra recorded
by the FP (Finesse 80). c Cut
through far field intensity
distribution orthogonal to
fringe orientation. Other
parameters: Temperature
69 �C, current I ¼ 387 mA

66 T. Ackemann et al.



might be related to the fact that the visibility remains above the 0.9 level, i.e.
remains higher than in Fig. 8a.

Before the main locking region, there are already small regions (around 1.5 and
3 GHz) in which partial locking takes place. An extrapolation of the phase in the
main locking region seems to match qualitatively the phase values obtained in
these regions. There are also some ranges of non-monotonous behavior of the
phase (a decrease with increasing detuning) in the partial locking regions around 3
and 4 GHz. The significance of these observations is not clear at the present stage
of investigations.

In summary, we have obtained a variety of different dynamical behaviors for
LCS pairs with different distances ranging from 30 to 80 lm. They all share the
common feature of a region of nearly complete locking in which the phase is
evolving approximately linearly with detuning. The locking is dominantly anti-
phase (p locking phase) and the locking phase varies by nearly p over the locking
range. We will argue in the next sections that these observations are a manifes-
tation of the Adler-scenario. The observed variations in dynamics are expected
since important parameters are associated to background disorder that cannot be
controlled by the operator.

3 Theoretical Description

3.1 The Semiconductor Class-B Model

Since the pioneering work of Lang and Kobayashi [97] a good deal of attention has
been paid to the modelling of feedback effects on the dynamics of semiconductor
lasers (see for example [98]). Most of the work has been done however by
neglecting the spatial degrees of freedom in the transverse direction. Transverse-
space dependence is critical for LCS and it should be included in any model that
describes the set-up discussed in the previous section. Following [52] the
dynamical evolution of the intra–VCSEL optical field E and carrier density N of a
VCSEL with frequency-selective feedback can be modelled by the following
system of coupled partial differential equations and mapping:

otE ¼ �ð1þ ihÞE þ ir2E þ rð1� iaÞðN � 1ÞE þ 2
ffiffiffiffiffi
T1
p

ðT1 þ T2Þ
F ð4Þ

otN ¼ �c N � J þ jEj2ðN � 1Þ þ Dr2N
h i

ð5Þ

FðtÞ ¼ e�idsf Ĝðt � sf =2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T1

p
Fðt � sf Þ þ

ffiffiffiffiffi
T1
p

Eðt � sf Þ
n o

ð6Þ

In Eq. (4), h is the detuning of the VCSEL cavity with respect to the carrier
reference frequency, r is a coupling constant, a is the linewidth enhancement
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factor, and T1 and T2 are the transmittivities of the VCSEL mirrors. Note that light
propagation in the external cavity is considered here without approximations
typical of the Lang–Kobayashi approximation (see also [99]). This allows for the
consideration of large feedback reflectivities without incurring in unphysical
results (see more details in [52]).

In Eq. (5), J is the injection current normalized to the value at transparency.
Time is scaled to the VCSEL cavity lifetime, and c is the ratio of the cavity
lifetime to the carrier response time in the VCSEL. The term Dr2N describes
carrier diffusion but is omitted in what follows. A similar description for field and
carriers dynamics was used to model an amplifier CS [23, 100]. Here, the holding
field of the amplifier model is replaced by the feedback field F due to the external
Bragg reflector. Space is normalized to the square root of the diffraction parameter.
For a low-loss VCSEL, where losses are dominated by the outcoupling, the time
scale is of the order of 10 ps, while the spatial scale is around 4 lm (see also
[100]). Since losses due to scattering and background absorption are difficult to
quantify we have restricted the analysis to these values of the physical scales.

In Eq. (6), d is the external cavity carrier field detuning, sf the external round–

trip time (see [52] for a detailed description of the external cavity). The operator Ĝ
describes the frequency–selective operation of the Bragg reflector on the field
envelope and is taken to be

ĜðtÞ hðtÞf g ¼ rg

2f

Z t

t�2f

eiXgðt0�tÞ hðt0Þ dt0; ð7Þ

where Xg is the grating central frequency relative to the reference (carrier) fre-
quency (shifted to zero in the following), f the inverse of the filter bandwidth and
rg the overall reflection coefficient. Note that this description neglects the trans-
verse wavevector dependence of the reflector response. Transverse effects of free–
space propagation (i.e. diffraction) in the external cavity are also disregarded, since
in the experimental setup the VCSEL output coupler is imaged directly onto the
Bragg reflector as described in the previous section.

Equations (4)–(6) have traveling wave solutions as discussed in [52]. It turns
out that there are two relevant sets of modes. One set is grouped around the grating
frequency and the other around the solitary VCSEL lasing frequency, with a
frequency gap in between. The former modes owe their existence to the strong
feedback provided by the grating at frequencies close to its central frequency and
as a result, have the lowest thresholds. The latter modes exist where the feedback
is small and so can be termed VCSEL modes. The frequency gap between grating–
determined and VCSEL modes depends on the detuning between VCSEL and
grating, as well as on other system parameters.

Under suitable operating conditions it is possible to create a threshold gap
between the highest–threshold grating mode and the lowest–threshold VCSEL
mode [52]. As a result, a range of currents opens up where the grating–determined
modes exist (i.e. the system can lase) but where the laser off state is also stable (i.e.
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the system can also not lase). In this region of bistability between lasing and non–
lasing states it is possible to observe LCS. Numerically one finds that the LCS can
be either single– or multi–frequency, depending on system parameters, in 2D as
well as 1D [52].

Spatial inhomogeneities, such as those associated to uncontrolled fluctuations in
the VCSEL growth process, can be introduced in the model by considering spatial
dependence on the model parameters. In particular one can consider in Eq. (4) a
spatially dependent detuning, that is h ¼ hðxÞ for a 1D system and h ¼ hðx; yÞ for a
2D one.

3.2 The Simplifed Ginzburg–Landau Model

In this work we are primarily interested in single-frequency laser solutions, in
particular solitons. For such solutions the carrier dynamics can be eliminated,
reducing the model to a nonlinear equation for Eðx; tÞ, coupled to a linear equation
for the feedback field F. As discussed in [52] and in more detail in [79] these
equations have a structure corresponding to the matching of a nonlinear ‘soliton’
response to a linear ‘spectral’ response. The latter contains all the gain/loss and
phase dependence arising from the delay, grating and mirror properties, while the
former describes the effects of current (gain, saturation) and of diffraction. The
matching of these responses is associated with the intersection of corresponding
curves in a complex plane (C in Fig. 10) describing net gain and phase shift [79].
As illustrated in Fig. 10, the soliton curve is typically rather smooth, originating in
a point whose location depends smoothly on current. The spectral curve can be
highly structured, especially in the case of delayed feedback as is clear when one
considers that each external cavity mode must correspond to a different intersec-
tion between the soliton line and the spectral curve [52]. Figure 10 shows an
example.

It is instructive to investigate the simplest scenario of LCS, which we can
obtain by setting aside complications such as delay and high-order nonlinearity.
Doing so will also enable us to compare and contrast other models of dissipative
soliton interaction, such as those based on generic models such as the cubic-quintic
complex Ginzburg–Landau equation (CQGLE) and systems of CGLE [30, 101, 102].
If we eliminate delay and replace the feedback grating with a Lorentzian-response
filter, the spectral response curve is broadly similar to the envelope of that in Fig. 10.
It is intersected only twice by the soliton line in relevant cases, corresponding to two
single-frequency soliton solutions. One (of lower amplitude) is always unstable,
while the other may be stable.

A simple model based on this scenario, which captures the basic features of a
semiconductor laser with feedback, consists of a cubic complex Ginzburg–Landau
equation (CGLE3) linearly coupled to an additional linear filter equation [80, 103]
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oE

ot
¼ g0E þ g2jEj2E þ ~D

o2

ox2
E þ F þ inðxÞE;

oF

ot
¼ �kF þ ~rE:

ð8Þ

Here, Eðx; tÞ is the intra-cavity field (we consider only the 1D case), g0 describes
linear gain and detuning, g2 nonlinear gain saturation and frequency shifts (the
ratio Imðg2Þ=Reðg2Þ corresponds to the a-factor of semiconductor lasers discussed
above). The spatial coupling parameter ~D represents diffusion and/or diffraction
depending on its phase: we will set ~D ¼ �i corresponding to pure diffraction.
Fðx; tÞ is the feedback field, ~r the feedback strength and k the bandwidth of the
feedback. Finally, nðxÞ describes spatial variations of the linear detuning due to
local variations in the optical length of the cavity, as discussed in Sect. 2. The time
and space coordinates (t; x) are scaled to 1 ns and 40 lm, respectively, i.e. the
normalized scalings cannot be compared directly between the class-B and the
CGLE-F model, but they refer to similar physical scales, after the scalings are
undone.

For nðxÞ ¼ 0, Eq. (8) has an analytical soliton solution of chirped-sech type
[79, 103, 104]:

E ¼ Emax½coshðKxÞ	�1�ibei/eixt ð9Þ

where the amplitude Emax, the inverse width K, the chirp b and the frequency x are
expressed through system parameters. / is an arbitrary phase, indicating the phase
invariance of the system. The field amplitude decays exponentially in the wings of
the soliton (see Fig. 11a below for a particular example). The full width at half
maximum of the intensity profile of the soliton is 2x0, where cosh2ðKx0Þ ¼ 2, i.e.
x0
 0:88=K. The crucial difference between the dissipative soliton (9) and an
analogous conservative soliton is the nonzero value of b leading to the dependence
of the phase on x as illustrated in Fig. 11a. Far from the center, the phase changes
linearly with distance and hence repeats with a period of P ¼ 2p=ðKbÞ. Hence
only with a moderate to large absolute value of chirp will the soliton phase change

Fig. 10 Spectral curve for
the coupled–cavity system
showing the soliton line
(dashed) and the plane–wave
threshold (dotted line). After
[52]
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significantly within the soliton width x0. Recall that an NLSE soliton has flat
phase, i.e. zero chirp: broadly speaking, the chirp increases with the ratio of
nonlinear gain to nonlinear dispersion.

4 Theoretical Results: Homogeneous Systems

4.1 Ginzburg–Landau Model

In this subsection and in Sect. 5.1 we consider the pairwise interaction of solitons
found in the model (8). We adopt throughout the parameter values of
g0 ¼ ð�4; 28Þ, g2 ¼ ð�96;�48Þ, k ¼ 2:71, ~r ¼ 162:6 (see [80]). These parame-
ters imply a rather small value (0:5), of the alpha-factor, so chosen in order to
enhance the soliton chirp, thus making the interaction stronger and easier to model.

We consider first the ideal case with translational invariance (nðxÞ ¼ 0), where
a single soliton has two free parameters, location and phase. We chose a super-
position of two solutions of type (9), with the maximum of the left soliton at x1,
and the maximum of the right soliton at x2 [ x1 as initial conditions for the
evolution. We also chose the initial phases /1 and /2. The two LCS will mutually
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Fig. 11 a Profile of the soliton field (9) for the parameters listed in the text. Dots show the phase
(left vertical axis); solid line shows the amplitude distribution (right vertical axis, semi-
logarithmic scale). b ‘interaction plane’ of two LCS. The arrows indicate the direction of motion
of the system along any trajectory. The dark-gray shaded region is a dense spiral. Black dots near
U ¼ p=2 are foci, while the open dots (along U ¼ 0 and U ¼ p) are saddle points. The vertical
dash-dotted lines link subplots a and b, and confirm that the saddles have the same spatial period
as the phase of an isolated soliton. The shading is explained in the text
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interact by providing a perturbation to each other. The interaction can indeed be
understood as if each solitons is placed in a potential created by the other, con-
sidered as the ‘driver’. This means that the field profile of a solitary soliton can be
considered as the ‘driving potential (and field)’ (see Fig. 11a).

The integration of model (8) can be visualized nicely in the ‘interaction plane’,
introduced in [30] and spanned by polar coordinates L ¼ jx2 � x1j and
U ¼ /2 � /1. The temporal evolution on the interaction plane with different initial
values of L and U is presented in Fig. 11b, which depicts key trajectories. It is
characterized by a series of foci at U � p=2 corresponding to moving bound states,
and two series of saddles with U ¼ 0 and U ¼ p representing stationary bound
states. The stable and unstable manifolds of the saddles coincide with the Gold-
stone modes of the single soliton. The horizontal manifolds correspond to the
soliton translation mode, while the vertical manifolds to that of the local phase.
Note that neighboring saddles have opposite stability properties with respect to
phase and translation. The light-gray (white) shading in Fig. 11b shows the regions
where the active tangential components are directed counterclockwise (clockwise)
in the upper half-plane (the sense of rotation is inverted in the lower half-plane that
is not shown). It is clear that the location of the saddles is strongly determined by
the chirped phase of the individual solitons, which leads to intensity oscillations
in their mutual interference profile [29, 34]. We will see how the linewidth
enhancement factor a affects the chirped phase and consequently the LCS inter-
action in Sect. 4.2. Note that in driven systems without phase symmetry the
amplitude already oscillates in the tail of the single soliton as it decays, providing
direct means for the formation of bound states at discrete separations [24, 25, 27].

The interaction phase space diagram of our cubic system with filter looks
qualitatively similar to that of the cubic-quintic complex Ginzburg–Landau
equation [34, 36]. We can conclude that this kind of weak-interaction scenario is
qualitatively independent from the mechanism of soliton stabilization (quintic
nonlinearity or linear filter), although details as soliton width and interaction
strength are affected by the details of the nonlinearity quantitatively, of course.
This is maybe not surprising since the weak-interaction scenario is dominated by
the spatial region in the middle between the solitons where the intensities of both
LCS are rather small.

As the principal structure of the interaction plane has been described before
[34, 36], we do not go into more detail but mention the deviations of the foci points
from �p=2 (see, in particular, the innermost focus in Fig. 11b). It appears that the
foci are slightly shifted from / ¼ p=2 (asymptotically approaching p=2 for
L!1), while the exact p=2 would correspond to fixed points of center type,
rather than attracting foci [41]. In summary when the soliton phase is strongly
chirped, the dynamics in the interaction plane consists of sets of trajectories which
spiral (sometimes very slowly if L is large) into one of a series of foci, each
corresponding to a two-soliton bound state which moves transversely. These
spirals are bounded by a semi-annulus consisting of a set of four heteroclinic
trajectories separate linking adjacent pairs of (0; p) saddles. This picture loses
validity for very small values of L, when the description as a pair of separate,
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weakly-interacting, solitons becomes problematic and soliton merging takes place
[105] (see also the discussion in the following subsection).

For increasing absolute value of the imaginary part of g2 (increasing a-factor of
the semiconductor laser) the phase profile of the solitons becomes flatter and the
saddles move to higher distances in the interaction plane. The chosen value of g2

here corresponds to a ¼ 0:5, which is smaller than the experimentally relevant
value (a �2–9) but allows for an effective utilization of the interaction plane.

4.2 Semiconductor Class-B Model

As in the case of the Ginzburg–Landau model described above, the semiconductor
class-B model (4)–(6) plus (7) does not contain any optical injection, i.e. it is not
an externally driven system. The LCS are then free to choose their own frequency
and phase. As such, each LCS can take on a different phase from its neighbouring
LCS. We examine here the interaction between two LCS with an initial phase
difference at a fixed value while increasing the initial spearation distance. In order
to be closer to the experimental realization we use two separate values of the
linewidth enhancement factor: a ¼ 5:0 and a ¼ 9:0. Other parameter values are:
f ¼ 1, c ¼ 0:01, T1 ¼ 0:008, T2 ¼ 0:0002, sf ¼ 0:05 ns, rg ¼ 0:9 and r ¼ 0:9. For
a ¼ 9:0 LCS are found for J ¼ 1:63, h ¼ 1:0 and d ¼ 0:0 while for a ¼ 5:0 LCS
are found for J ¼ 1:61, h ¼ 1:0 and d ¼ 2:0. We note that since the reflection of
the grating is large (rg ¼ 0:9) and the return times are relatively short, Lang–
Kobayashi models cannot be applied here since they would produce spurious
solutions with no physical meaning [52]. Model (4)–(7) does not contain Lang–
Kobayashi approximations and carefully describes configurations close to the
experimental realizations of high feedback reflectivities.

Figure 12 displays the single LCS profiles of amplitude and phase for the two
parameter cases corresponding to a ¼ 9:0 and a ¼ 5:0. It is clear when comparing
these figures with Fig. 11a that the LCS phase profiles greatly depend on the
linewidth enhancement factor a. In the phase profile of the LCS in the Ginzburg–
Landau model with a ¼ 0:5, the range of phase variation within the width over
which the LCS is above the noise floor was larger than 9p. In the semiconductor
class-B models with a factors ten times larger, the total phase variation over which
the LCS is above the noise floor is instead just above p. The much smaller chirp of
the LCS has important consequences on the position and dynamical relevance of
the saddle points in the interaction (LcosðUÞ; LsinðUÞ) plane (see Fig. 11b). By
linearly fitting the phase profiles of the LCS we have estimated the position of the
closest saddle points with growing distances L (taking the results of Fig. 11 as a
guidance). In physical units the saddles are expected to be around L ¼ 108 lm and
L ¼ 117 lm for a ¼ 9:0 and a ¼ 5:0, respectively, i.e. more than ten times the
FWHM size of the LCS.
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Numerical simulations of the interaction of two closely placed LCS on a
homogeneous background have been performed. Figure 13 shows the temporal
evolution of the laser intensity for the process of merging of two LCS when the
initial distance of the LCS is 18.8 lm for a ¼ 9. The two peaks oscillate out of
phase while approaching each other before merging takes place. Merging of
interacting spatial solitons is intrinsically related to their dissipative nature and has
been described at length in the case of VCSELs with optical injection in [105]. The
phase difference between the LCS first rotates and then becomes ill-defined when
one of the two LCS disappears.

(a)

(b)

Fig. 12 (Color online) a The phase (solid line) and log of the amplitude (dashed line) of a LCS
for a ¼ 9:0. b The phase (solid line) and log of the amplitude (dashed line) for a LCS with
a ¼ 5:0. The blue dashed-dotted line corresponds to the noise floor
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We have then increased the initial separation distances L of the LCS to 27 lm
for a ¼ 9:0 and to 50 lm for a ¼ 5:0. These distances are above the critical values
below which LCS merging is observed. Figure 14 shows the time evolution on the
interaction plane (LcosðUÞ; LsinðUÞ) of simulations starting at U ¼ �0:1p.

One first observes a quick resetting of the LCS phase difference to the value of
U ¼ p followed by a very slow progressive separation of the two LCS. The tip of
the solid line after phase resetting and along the horizontal axis of Fig. 14 cor-
responds to the final LCS distance after long extended simulations (90 ls). This
means that the dashed line on the horizontal axis corresponds to regions where the
LCS are almost incapable to interact. The situation is similar to what has been
observed in numerical simulations for LCS in semiconductor lasers with saturable
absorbers and large initial separation distances between the solitons [42]. In our
case the LCS reach a distance larger than five soliton diameters at which they do
not feel each other any longer. More importantly, the slowly decaying phase
profile implies that interacting LCS at physical values of the a factor cannot reach
the saddle points that re-direct the phase difference evolution towards the foci at
U ¼ p=2 in the Ginzburg–Landau model of Sect. 4.1.

One cannot refer to the two LCS at the end of the simulations of the semi-
conductor class-B model of Fig. 14 as ‘locked’ although the phase difference U is p,
since the LCS are not interacting any longer. Moreover, defects in the growth of the
semiconductor material pin LCS to given spatial positions. For these reasons we

(a) (b)

(c) (d)

Fig. 13 Time evolution of the intensity of two interacting LCS for an initial distance of 18.8 lm
and a ¼ 9 for the class-B VCSEL model with FSF. a t ¼ 0 ns, b t ¼ 1:2 ns, c t ¼ 1:8 ns and
d t ¼ 6 ns. Parameter values are specified in the text
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decided that is was important to study locking of LCS when pinned in material
defects as described in details in Sect. 5.

5 Theoretical Results: Inhomogeneous Systems
and Adler-Locking

5.1 Ginzburg–Landau Model

We turn now to address the case of practical importance in which the interaction is
between solitons trapped by defects. We break the translational invariance by
imposing a pinning potential, nðxÞ, which is localized, being zero everywhere
except in the intervals xj � W

2 \x\xj þ W
2 with j ¼ 1; 2, where it is given by

nðxÞ ¼ nj

2
sin � p

2
þ 2pðx� xjÞ

W

� �
� 1

� �
: ð10Þ

This potential is a smooth function, as shown for example in Fig. 16 by a gray line.
The width W of each trap is chosen close to the width at half maximum of the
LCS. The trap separation Lt ¼ jx2 � x1j is obviously an important parameter. We
consider the practically-relevant initial condition where there is one soliton in each
trap. In terms of the unperturbed (L;U) phase space diagram we are interested in
trajectories emanating from (Lt;U0), where U0 is arbitrary.

We consider first the symmetric case of two identical traps with n1 ¼ n2 ¼ n0,
and examine the changes in the interaction plane trajectories as n0 is increased.
Since translation is a neutral mode of the unperturbed system, any attractive
potential is able to trap an isolated LCS. Two solitons in identical, weak, traps will
still interact, and the strength and sign of their interaction depend strongly on the
separation Lt of their respective traps. As mentioned above, almost all trajectories
in the trap-free case are attracted to one of the the foci in Fig. 11b for the
considered values of g2, in accordance with the literature [30, 31, 34]. The

108μm

(a)

27μm
117μm

50μm

(b)

Fig. 14 The interaction plane ðLcosðUÞ; LsinðUÞÞ showing a numerically calculated trajectory
and the estimated location of the anticipated closest saddle for a a ¼ 9:0 and b a ¼ 5:0. The
origin of the plane is in the center of the circle
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corresponding bound states move with a finite speed, and so these states are not
destroyed by infinitesimal perturbations, but only by those of finite amplitude.
Since almost all trajectories in the interaction plane are attracted to a focus for
n0 ¼ 0, they will still do so in the presence of infinitesimal perturbations.
Trajectories starting close enough to a L-unstable saddle will however be modified
by infinitesimal perturbations because the unstable eigenvalue becomes vanish-
ingly small close enough to such a saddle. We can therefore expect that such
saddles become stable nodes when Lt is close enough to the saddle separation.
Such a node corresponds to the two solitons being phase-locked, either in-phase or
out-of-phase, depending on Lt. The basin of attraction of each new node will be
infinitesimal for an infinitesimal perturbation, but grows with n0. Note that the
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L-stable saddles of the homogeneous system are all U-unstable, and will remain so
under perturbation.

For finite n0, the solitons will phase-lock over a finite range of Lt around the
saddle-separation. These trap-induced nodes will become the dominant attractors
once n0 is large enough to destroy the p=2 foci thus implying that the solitons
remain locked for all times. For strongly-trapped solitons the interaction plane
dynamics collapses onto the circle L ¼ Lt, and the phase difference U is attracted
to either 0 or p, depending on Lt but independent of U0.

Due to the decrease of interaction strength with distance L, the outermost foci
and saddles are affected first. For n0 ¼ 3:0 (still an order of magnitude smaller than
Imðg0Þ ¼ 28), the depth of the trap is large enough to prevent drift and to keep the
solitons at fixed positions for Lt [ 1:25, i.e. outside the central white region in
Fig. 11b. At the same time, the perturbation by nðxÞ is still small enough that the
shape of the solitons deviates only slightly from (9) within the trap. Within each of
the colored bands (light-gray or white) in Fig. 11b the locking phase is that of the
saddle lying in that band, which is phase-stable in the unperturbed problem. This is
illustrated in Fig. 15, where the anti-phase state is selected for Lt ¼ 1:9 but the in-
phase one for Lt ¼ 2:1.

Since the trapped soliton pairs have a pure phase dynamics, we can attempt to
describe the system by an Adler equation [66], the archetypical equation
describing synchronization between coupled oscillators. For our case it can be
written in the form

dU
dt
¼ Dx� e sinðUÞ ; ð11Þ

where Dx is the trap-detuning (which is zero for n1 ¼ n2), and e is a coupling
constant. In-phase and anti-phase solutions are selected for Dx ¼ 0, depending on
the sign of the coupling. For positive e the stable final state is U ¼ 0, for negative e
it is U ¼ p. It is obvious from the above results that the distance between traps
affects both the magnitude and sign of the coupling in our system. Corresponding
terms appear in the perturbation analysis of the cubic-quintic Ginzburg–Landau
equation [34]. The survival of the (slightly modified) p=2-states for weak per-
turbations, followed by a transition to in- or anti-phase locking was also observed
numerically for the CQGLE with regular modulations [76, 78].

In- and anti-phase synchronization are the only possibilities in the Adler
equation for Dx ¼ 0, corresponding to the ideal situation of identical traps with
n1 ¼ n2. The pinning potential of real systems is however the result of the growth
process of the semiconductor material and the traps are not identical. Then we
model this fact by introducing a difference in the trap depths (gray line in Fig. 16).
This difference leads to the crucial consequence that the natural frequencies of the
two LCS are unequal, and so Dx is finite in the Adler equation. For states with
negligible interaction (large Lt), the phase difference evolves as a linear function of
time, U ¼ Dxt. Decreasing Lt the coupling increases and the dynamics of U starts
to deviate from a linear change (see Fig. 16 bottom inset). For small enough Lt,
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there is frequency and phase locking (see Fig. 16 top inset). One can see that the
system is synchronized now to a phase-locked state (Fig. 16 main panel) with a
locking phase which is neither 0 or p.

For a single soliton in a shallow trap direct numerical integration demonstrates
that its frequency depends linearly on the depth of the trap. Hence, for each value
of n1 and n2, we can calculate the frequencies x1 and x2 which the LCS would
have in the absence of neighbors. We have studied the synchronization dynamics
for different detunings Dx for various choices n2 6¼ n1, and found very good
agreement with that predicted by the Adler equation (11) (see Fig. 18, for a plot).
The stable steady state of the system (11) gives the simple expression
sin�1 ðDx=eÞ for the locked value of U. Locking obviously becomes impossible
for jDxj[ jej, and we can use this limit to compute the coupling constant e as a
function of trap separation Lt. We find that the interaction strength has an oscil-
latory component superimposed on the expected decay with increasing trap sep-
aration, which we can attribute to the saddle distribution in the unperturbed
problem, see Fig. 11. This is illustrated in Fig. 17.

One can interpret the findings in Figs. 11 and 17 in the way that the coupling
coefficient e has an (exponentially) damped oscillatory behavior with inter-soliton
distance Lt. In particular this implies that the coupling becomes zero at some
distances (at the boundaries between the ring-shaped regions in Fig. 11, where the
direction of phase flow in the phase direction changes), at least in leading orders,
and the tendency to locking is very weak. It also explains, at least qualitatively,
why the points of strongest locking are shifted away from the center of the ring-
shaped regions in Fig. 11: The coupling strength is defined by the maximum of the
product of the exponential decay and the oscillatory component and hence occurs
at smaller distances than the maximum of the oscillation, which determines the
ring structures. The decay of coupling strength is related to the diminishing
overlap between the soliton tails with increasing distance, the oscillatory
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component to the change of interference conditions due to chirp. One can also
reinterpret the sequence of phase-stable and phase-unstable saddles at U ¼ 0; p in
Fig. 11 as being due to an Adler-type phase selection for zero detuning and an
oscillatory sign of the coupling coefficient e. Indeed, for the LSA and the CQGLE
Adler-type equations for the relative phase with an interaction coefficient showing
an exponentially damped oscillatory behavior with distance were derived in
[34, 41], but with additional terms due to the translational Goldstone mode. Of
course, the damped oscillatory behavior of the phase-coupling coefficient with
inter-soliton distance in the Adler equation is related to a corresponding behavior
of the overall interaction strength between solitons with inter-soliton distance as
described first in [29] and then explored in many of the references given in the
introduction.

Taking into account the Lt dependence by scaling Dx by e, the Adler equation
predicts a universal arcsin dependence of the locking phase on the trap-detuning.
We find just such a dependence for a broad range of parameters. An example is
shown in Fig. 18 for Lt ¼ 1:5, where analogous data for the semiconductor class-B
model shows exactly the same Adler signature as discussed in the following
section.

Before ending this section, we mention that two LCS in two traps of different
depths (or widths) are obviously not entirely equivalent but for the parameters
considered the differences are negligible as shown by the profiles in Fig. 16. The
same holds for the class-B case discussed below. In the experiment there are
actually noticeable variations in width and amplitude between different LCS,
although still small, as evidenced in Fig. 5 (see also the text in Sect. 2.2 and [49]).

Fig. 18 (Color online) Locked phase differences U of pinned LCS versus the potential depth
difference Dn ¼ n1 � n2 from integration of the semiconductor class-B model (triangles, LCS
separation of 4 soliton widths) and Ginzburg–Landau model (blue circles, jx2 � x1j ¼ 1:5). The
solid line refers to the Adler equation (11) for negative e. The inset shows the near-field profile of
the jEj2 of two interacting LCS. Such profile changes very little across the Adler locking region.
From [65]
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5.2 Semiconductor Class-B Model

The locking of LCS pinned to background defects as observed experimentally in
the VCSEL with frequency-selective feedback in Sect. 2 and in the simulations of
the Ginzburg–Landau model in Sect. 5.1 is a universal phenomenon and has been
found in the semiconductor class-B model of Eqs. (4)–(7) too. In order to simulate
the presence of the pinning defects, we have modified the field equation to

otE ¼ �ð1þ ihÞE þ i
o2

ox2
E þ rð1� iaÞðN � 1ÞE þ inðxÞE þ 2

ffiffiffiffiffi
T1
p

ðT1 þ T2Þ
F; ð12Þ

where the feedback field is still given by Eq. (6) and the trapping potential nðxÞ is
equal to zero everywhere except in the two intervals xj �W\x\xj þW where
nðxÞ ¼ nj with j ¼ 1; 2. The homogeneous case is recovered when n1 ¼ n2 ¼ 0.
The pinning potential is now a step function of x and the width 2W of the defects is
chosen to be around twice the width at half maximum of the LCS. As in the
Ginzburg–Landau case, differences between the defects are described by the
depths n1 and n2 of the pinning potential. For nj different from zero, the presence
of the pinning potential breaks the translational invariance of each LCS. Small
variations of nj from zero lead to small changes in the soliton frequency x without
modifying its stability properties.

If two trapped defects are close enough in space, the LCS interaction locks their
phase difference to values that depend on Dn ¼ n1 � n2 until the potential depth
difference is too large to maintain strong interaction. When compared to the case
without defects (see Sect. 4.2) the evolution of the phase difference U between the
trapped LCS contains now only a fast relaxation to well determined stationary
values that depend on Dn and consequently on the frequency difference between
the two LCS. The triangles in Fig. 18 show the stationary phase difference U from
numerical simulations of Eq. (12) and (5)–(7) when changing the depth of one of
the trap while keeping the second one fixed to the value of �0:1 while the distance
between the centres of the traps is kept fixed at jx2 � x1j ¼ 31 lm. LCS phase
locking takes place for jDnj\Dntr. This locking phenomenon is universal for LCS
pinned by defects and the blue circles in Fig. 18 corresponds to numerical simu-
lations of the Ginzburg–Landau model of Sect. 18 under very different conditions
of operation. The solid line in Fig. 18 shows an excellent agreement of the Adler
equation (11) predictions with the numerical results of both the Ginzburg–Landau
and the semiconductor class-B models for two interacting LCS trapped by defects.

In the locked state, LCS have a fixed phase difference and the same frequency.
This is demonstrated in Fig. 19a where the optical spectra for two values of Dn
inside the locked region are shown, which correspond to Dn=Dnth ¼ 0 and 0:99,
respectively. Within the locked region, the spectra of the two LCS overlap exactly
indicating a strong interaction. There is a progressive shift of the locked frequency
while scanning the Adler region. This matches qualitatively the experimental
results in Figs. 8 and 9, though the absolute value is much lower. This is not
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surprising, because the technique used to change detuning in the experiment is
different.

Figure 19b displays the corresponding far field images. Interference fringes
between the two locked solitons are clearly visible. A progressive change of the LCS
phase difference U (from p at Dn=Dnth ¼ 0 to around 1:5p at Dn= Dnth ¼ 0:99) is
reflected in the change in the symmetry of the fringe pattern. All these features of the
LCS locked states are confirmed in the Ginzburg–Landau model and, more impor-
tantly, in the experiments on VCSELs with frequency-selective feedback presented
in Sect. 2.

Both optical spectrum and far-field fringes change greatly as soon as one moves
outside of the locking range as shown in Fig. 20 for Dn=Dnth ¼ 2 and 5. The spectra
of the two LCS are now clearly separated although a partial overlap of some of the
peaks is still present due to the non-uniform evolution of the relative phase. Such
feature affects the far-field image, too, where some interference maxima are still
visible although progressively disappearing with increasing Dn. For very large
difference of the defect minima, the fringe visibility disappears completely, as
expected for two LCS with large frequency separation.

The Adler locked state between LCS is a robust feature independent of initial
conditions such as initial phases, frequencies and sequential order of creation of
the two LCS. Once the locked state is attained, one of the two LCS can be
switched off by a short, localized perturbation to the carrier density at its location.
Hence, LCS retain their solitonic properties in the phase-locked state in the sense
that they are still individually bistable and optically controllable.

(a) (b)

Fig. 19 Optical spectra for a time window of 5 ls (a) and far field fringes averaged over 2 ls
(b), for Dn=Dnth ¼ 0 (solid lines in a and b) and 0:99 (dashed lines in a and b). In a each line
contains the overlap of the spectra of both LCS. Simulations of the semiconductor class-B model
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6 Conclusions

Lasers are oscillators of very high-frequency electromagnetic radiation amplified
via stimulated emission in a cavity. Thus, it is not surprising that coupled lasers
lock their phases and frequencies in a way similar to oscillators as demonstrated in
the seventies through injection locking [9]. Indeed phase and frequency locking of
master-slave lasers is almost as old as the laser itself [2]. In the nineties, coupling
between adjacent laser elements in arrays also resulted in phase locking typical of
coupled oscillators [4].

Here we have demonstrated that locked laser beams can be contained in the
same semiconductor laser device in the form of coupled spatial solitons. The
specific configuration of choice is that of a VCSEL with frequency-selective
feedback provided by a volume Bragg grating. Such systems has been shown to
sustain localized structures in the form of bright LCS corresponding to narrow
intensity peaks of coherent light on a dark background [47–49]. In principle, well
separated LCS are independent micro-laser beams that can be individually
addressed and removed thus forming an optical memory. Theoretically, the
interaction of two phase-chirped LCS should lead to a phase locked state with a
frequency difference close to p=2 in a way similar to what is observed in temporal-
longitudinal systems [40]. The reality of VCSELs with frequency-selective feed-
backs is however quite different from this scenario. First, realistic values of the
linewidth enhancement factor a strongly reduce the LCS phase chirp making it
impossible to observe the p=2 locking even on homogeneous backgrounds.

(a) (b)

(d)(c)

Fig. 20 Optical spectra for a time window of 5 ls a–c and far field fringes averaged over 2 ls
b–d, for Dn=Dnth ¼ 2 (a–b) and 5 (c–d). In a and c the solid and dashed lines correspond to the
spectra of each LCS
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Secondly and more importantly, LCS in real systems are pinned to local defects
that are due to the growth process of the semiconductor material. We have shown
that the pinning process has two fundamental effects on a single LCS: to break the
translational symmetry and to modify its frequency. When these effects are taken
into consideration, the picture of the interaction of pinned LCS changes drastically
from that of cavity solitons in temporal-longitudinal systems. We demonstrated
both experimentally and theoretically that two trapped LCS in VCSELs with
frequency-selective feedback display Adler synchronization leading to phase and
frequency locking.

We expect similar considerations to apply to solitons in LSA and non-
semiconductor systems with phase symmetry such as photorefractive oscillators.
Moreover our study uses a continuous model, but synchronization is between
discrete entities, the solitons. As such, we have provided a bridge between
spatially extended media and coupled, predefined oscillators. Furthermore we
note that the LCS are quite peculiar micro-lasers since they are self-localized and
bistable so that new interesting dynamics beyond the standard Adler scenario is
expected from these properties.

We plan to extend the study of interaction of pinned LCS from two to multiple
elements as well as considering their pinning into externally induced regularly and
irregularly arranged traps. This can be based on codes already developed for 2D
dynamical simulations and stability analysis of single soliton solutions in the
CGLE-F as well as class-B models [52, 80, 106]. In view of the random detuning
conditions due to the disorder, it can be anticipated that it is impossible, or at least
difficult, to achieve locking of more than two LCS by a single, global control
parameter (as the VBG tilt). Although we occasionally observed phase-locking of
three solitons [107], it would be useful to have control on the local values of the
detuning, in addition to the global one used in this work. Previous investigations
established that the hysteresis loop of LCS can be shifted to some extent inde-
pendently by local injection of an external beam [108]. The external beam gen-
erates or depletes carriers (depending on wavelength), the refractive index changes
and this causes a shift of the cavity resonance (there might be a thermal effect in
addition) and finally of switching thresholds. Although not investigated in [108],
we expect the change of switching thresholds to be accompanied by a change in
frequency. This would open up the intriguing possibility of shaping the disorder
dynamically via an external beam structured with a spatial light modulator.
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