167 research outputs found

    Cholera diagnosis in human stool and detection in water: protocol for a systematic review of available technologies

    Get PDF
    Background Cholera is a highly infectious diarrheal disease spread via fecal contamination of water and food sources; it is endemic in parts of Africa and Asia and recent outbreaks have been reported in Haiti, the Zambia and Democratic Republic of the Congo. If left untreated, the disease can be fatal in less than 24 h and result in case fatality ratios of 30–50%. Cholera disproportionately affects those living in areas with poor access to water and sanitation: the long-term public health response is focused on improving water and hygiene facilities and access. Short-term measures for infection prevention and control, and disease characterization and surveillance, are impaired by diagnostic delays: culture methods are slow and rely on the availability of infrastructure and specialist equipment. Rapid diagnostic tests have shown promise under field conditions and further innovations in this area have been proposed. Methods This paper is the protocol for a systematic review focused on identifying current technologies and methods used for cholera diagnosis in stool, and detection in water. We will synthesize and appraise information on product technical specifications, accuracy and design features in order to inform infection prevention and control and innovation development. Embase, MEDLINE, CINAHL, Proquest, IndMed and the WHO and Campbell libraries will be searched. We will include studies reporting on field evaluations, including within-study comparisons against a reference standard, and laboratory evaluations reporting on product validation against field stool or water samples. We will extract data according to protocol and attempt meta-analyses if appropriate given data availability and quality. Discussion The systematic review builds on a previous scoping review in this field and expands upon this by synthesising data on both product technical characteristics and design features. The review will be of particular value to stakeholders engaged in diagnostic procurement and manufacturers interested in developing cholera or diarrheal disease diagnostics. Systematic review registration PROSPERO CRD42016048428

    Evaluation and selection of tandem repeat loci for Streptococcus pneumoniae MLVA strain typing

    Get PDF
    BACKGROUND: Precise identification of bacterial pathogens at the strain level is essential for epidemiological purposes. In Streptococcus pneumoniae, the existence of 90 different serotypes makes the typing particularly difficult and requires the use of highly informative tools. Available methods are relatively expensive and cannot be used for large-scale or routine typing of any new isolate. We explore here the potential of MLVA (Multiple Loci VNTR Analysis; VNTR, Variable Number of Tandem Repeats), a method of growing importance in the field of molecular epidemiology, for genotyping of Streptococcus pneumoniae. RESULTS: Available genome sequences were searched for polymorphic tandem repeats. The loci identified were typed across a collection of 56 diverse isolates and including a group of serotype 1 isolates from Africa. Eventually a set of 16 VNTRs was proposed for MLVA-typing of S. pneumoniae. These robust markers were sufficient to discriminate 49 genotypes and to aggregate strains on the basis of the serotype and geographical origin, although some exceptions were found. Such exceptions may reflect serotype switching or horizontal transfer of genetic material. CONCLUSION: We describe a simple PCR-based MLVA genotyping scheme for S. pneumoniae which may prove to be a powerful complement to existing tools for epidemiological studies. Using this technique we uncovered a clonal population of strains, responsible for infections in Burkina Faso. We believe that the proposed MLVA typing scheme can become a standard for epidemiological studies of S. pneumoniae

    Meningitis Dipstick Rapid Test: Evaluating Diagnostic Performance during an Urban Neisseria meningitidis Serogroup A Outbreak, Burkina Faso, 2007

    Get PDF
    Meningococcal meningitis outbreaks occur every year during the dry season in the “meningitis belt” of sub-Saharan Africa. Identification of the causative strain is crucial before launching mass vaccination campaigns, to assure use of the correct vaccine. Rapid agglutination (latex) tests are most commonly available in district-level laboratories at the beginning of the epidemic season; limitations include a short shelf-life and the need for refrigeration and good technical skills. Recently, a new dipstick rapid diagnostic test (RDT) was developed to identify and differentiate disease caused by meningococcal serogroups A, W135, C and Y. We evaluated the diagnostic performance of this dipstick RDT during an urban outbreak of meningitis caused by N. meningitidis serogroup A in Ouagadougou, Burkina Faso; first against an in-country reference standard of culture and/or multiplex PCR; and second against culture and/or a highly sensitive nested PCR technique performed in Oslo, Norway. We included 267 patients with suspected acute bacterial meningitis. Using the in-country reference standard, 50 samples (19%) were positive. Dipstick RDT sensitivity (N = 265) was 70% (95%CI 55–82) and specificity 97% (95%CI 93–99). Using culture and/or nested PCR, 126/259 (49%) samples were positive; dipstick RDT sensitivity (N = 257) was 32% (95%CI 24–41), and specificity was 99% (95%CI 95–100). We found dipstick RDT sensitivity lower than values reported from (i) assessments under ideal laboratory conditions (>90%), and (ii) a prior field evaluation in Niger [89% (95%CI 80–95)]. Specificity, however, was similar to (i), and higher than (ii) [62% (95%CI 48–75)]. At this stage in development, therefore, other tests (e.g., latex) might be preferred for use in peripheral health centres. We highlight the value of field evaluations for new diagnostic tests, and note relatively low sensitivity of a reference standard using multiplex vs. nested PCR. Although the former is the current standard for bacterial meningitis surveillance in the meningitis belt, nested PCR performed in a certified laboratory should be used as an absolute reference when evaluating new diagnostic tests

    Emergence of Epidemic Neisseria meningitidis Serogroup X Meningitis in Togo and Burkina Faso

    Get PDF
    Serogroup X meningococci (NmX) historically have caused sporadic and clustered meningitis cases in sub-Saharan Africa. To study recent NmX epidemiology, we analyzed data from population-based, sentinel and passive surveillance, and outbreak investigations of bacterial meningitis in Togo and Burkina Faso during 2006–2010. Cerebrospinal fluid specimens were analyzed by PCR. In Togo during 2006–2009, NmX accounted for 16% of the 702 confirmed bacterial meningitis cases. Kozah district experienced an NmX outbreak in March 2007 with an NmX seasonal cumulative incidence of 33/100,000. In Burkina Faso during 2007–2010, NmX accounted for 7% of the 778 confirmed bacterial meningitis cases, with an increase from 2009 to 2010 (4% to 35% of all confirmed cases, respectively). In 2010, NmX epidemics occurred in northern and central regions of Burkina Faso; the highest district cumulative incidence of NmX was estimated as 130/100,000 during March–April. Although limited to a few districts, we have documented NmX meningitis epidemics occurring with a seasonal incidence previously only reported in the meningitis belt for NmW135 and NmA, which argues for development of an NmX vaccine

    Sequential multiplex PCR assay for determining capsular serotypes of colonizing S. pneumoniae

    Get PDF
    Asymptomatic nasopharyngeal carriage represents an important biological marker for monitoring pneumococcal serotype distribution and evaluating vaccine effects. Serotype determination by conventional method (Quellung reaction) is technically and financially challenging. On the contrary, PCR-based serotyping represents a simple, economic and promising alternative method.Evaluation StudiesJournal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Genomic history of the seventh pandemic of cholera in Africa.

    Get PDF
    The seventh cholera pandemic has heavily affected Africa, although the origin and continental spread of the disease remain undefined. We used genomic data from 1070 Vibrio cholerae O1 isolates, across 45 African countries and over a 49-year period, to show that past epidemics were attributable to a single expanded lineage. This lineage was introduced at least 11 times since 1970, into two main regions, West Africa and East/Southern Africa, causing epidemics that lasted up to 28 years. The last five introductions into Africa, all from Asia, involved multidrug-resistant sublineages that replaced antibiotic-susceptible sublineages after 2000. This phylogenetic framework describes the periodicity of lineage introduction and the stable routes of cholera spread, which should inform the rational design of control measures for cholera in Africa

    Bovine Tuberculosis Prevalence Survey on Cattle in the Rural Livestock System of Torodi (Niger)

    Get PDF
    BACKGROUND: Bovine tuberculosis (BTB) is a widespread zoonosis in developing countries but has received little attention in sub-Saharan Africa, especially in Niger. Recent investigations confirmed the high incidence of the disease in cattle slaughtered in an abattoir in Niamey. The fact that most of the animals in which M. bovis has been identified were from the rural area of Torodi implied the existence of a probable source of BTB in this region. This study aimed to determine the prevalence of BTB infection in cattle and to identify risk factors for infection in human and cattle populations in Torodi. METHODS AND PRINCIPAL FINDINGS: A survey was carried out at the level of households keeping livestock (n = 51). The questionnaire was related to the potential risk factors and the presence of clinical signs of TB both in animals and humans. Comparative Intradermal Tuberculin Test was conducted to determine the TB status in cattle (n = 393). The overall apparent individual animal prevalence of tuberculin reactors was 3.6% (CI: 95%, 1.9-5.9), whereas the individual true prevalence was estimated at 0.8% (CI: 95%, 0.0-5.0). Using a multivariate logistic regression analysis and a classification tree analysis, the only household level risk factor that significantly influenced the presence of BTB in cattle was the presence of animals coughing in the herd (OR = 4.7, 95% CI: 1.12-19.71, p-value = 0.034). The lack of the practice of quarantine was borderline significant (OR = 4.2, 95% CI: 0.96-18.40, p-value = 0.056). CONCLUSION/SIGNIFICANCE: The study confirmed that BTB is endemic in cattle in Torodi and the risk of the transmission of the disease to humans is potentially high. For the control of the disease in livestock, slaughtering of infected animals and the compensation of the owners is needed. Collaboration between the veterinary and the medical sectors, in the diagnosis, monitoring, prevention and control of BTB is strongly encouraged
    corecore