106 research outputs found

    Association of plasma and cortical beta-amyloid is modulated by APOE ε4 status.

    Get PDF
    Background: APOE ε4’s role as a modulator of the relationship between soluble plasma beta-amyloid (Aβ) and fibrillar brain Aβ measured by Pittsburgh Compound-B positron emission tomography ([11C]PiB PET) has not been assessed. Methods: Ninety-six Alzheimer’s Disease Neuroimaging Initiative participants with [11C]PiB scans and plasma Aβ1-40 and Aβ1-42 measurements at time of scan were included. Regional and voxel-wise analyses of [11C]PiB data were used to determine the influence of APOE ε4 on association of plasma Aβ1-40, Aβ1-42, and Aβ1-40/Aβ1-42 with [11C]PiB uptake. Results: In APOE ε4− but not ε4+ participants, positive relationships between plasma Aβ1-40/Aβ1-42 and [11C]PiB uptake were observed. Modeling the interaction of APOE and plasma Aβ1-40/Aβ1-42 improved the explained variance in [11C]PiB binding compared to using APOE and plasma Aβ1-40/Aβ1-42 as separate terms. Conclusions: The results suggest that plasma Aβ is a potential Alzheimer’s disease biomarker and highlight the importance of genetic variation in interpretation of plasma Aβ levels

    Protein C Mutation (A267T) Results in ER Retention and Unfolded Protein Response Activation

    Get PDF
    BACKGROUND: Protein C (PC) deficiency is associated with a high risk of venous thrombosis. Recently, we identified the PC-A267T mutation in a patient with PC deficiency and revealed by in vitro studies decreased intracellular and secreted levels of the mutant. The aim of the present study was to characterize the underlying mechanism(s). METHODOLOGY/PRINCIPAL FINDINGS: CHO-K1 cells stably expressing the wild-type (PC-wt) or the PC mutant were generated. In order to examine whether the PC mutant was subjected to increased intracellular degradation, the cells were treated with several inhibitors of various degradation pathways and pulse-chase experiments were performed. Protein-chaperone complexes were analyzed by treating the cells with a cross-linker followed by Western blotting (WB). Expression levels of the immunoglobulin-binding protein (BiP) and the phosphorylated eukaryotic initiation factor 2α (P-eIF2α), both common ER stress markers, were determined by WB to examine if the mutation induced ER stress and unfolded protein response (UPR) activation. We found no major differences in the intracellular degradation between the PC variants. The PC mutant was retained in the endoplasmic reticulum (ER) and had increased association with the Grp-94 and calreticulin chaperones. Retention of the PC-A267T in ER resulted in UPR activation demonstrated by increased expression levels of the ER stress markers BiP and P-eIF2α and caused also increased apoptotic activity in CHO-K1 cells as evidenced by elevated levels of DNA fragmentation. CONCLUSIONS/SIGNIFICANCE: The reduced intracellular level and impaired secretion of the PC mutant were due to retention in ER. In contrast to other PC mutations, retention of the PC-A267T in ER resulted in minor increased proteasomal degradation, rather it induced ER stress, UPR activation and apoptosis

    Single-cell analysis identifies cellular markers of the HIV permissive cell.

    Get PDF
    Cellular permissiveness to HIV infection is highly heterogeneous across individuals. Heterogeneity is also found across CD4+ T cells from the same individual, where only a fraction of cells gets infected. To explore the basis of permissiveness, we performed single-cell RNA-seq analysis of non-infected CD4+ T cells from high and low permissive individuals. Transcriptional heterogeneity translated in a continuum of cell states, driven by T-cell receptor-mediated cell activation and was strongly linked to permissiveness. Proteins expressed at the cell surface and displaying the highest correlation with T cell activation were tested as biomarkers of cellular permissiveness to HIV. FACS sorting using antibodies against several biomarkers of permissiveness led to an increase of HIV cellular infection rates. Top candidate biomarkers included CD25, a canonical activation marker. The combination of CD25 high expression with other candidate biomarkers led to the identification of CD298, CD63 and CD317 as the best biomarkers for permissiveness. CD25highCD298highCD63highCD317high cell population showed an enrichment of HIV-infection of up to 28 fold as compared to the unsorted cell population. The purified hyper-permissive cell subpopulation was characterized by a downregulation of interferon-induced genes and several known restriction factors. Single-cell RNA-seq analysis coupled with functional characterization of cell biomarkers provides signatures of the "HIV-permissive cell"

    Augmentation of Reverse Transcription by Integrase through an Interaction with Host Factor, SIP1/Gemin2 Is Critical for HIV-1 Infection

    Get PDF
    There has been accumulating evidence for the involvement of retroviral integrase (IN) in the reverse transcription of viral RNA. We previously identified a host factor, survival motor neuron-interacting protein 1 (SIP1/Gemin2) that binds to human immunodeficiency virus type 1 (HIV-1) IN and supports HIV-1 infection apparently at reverse transcription step. Here, we demonstrated that HIV-1 IN together with SIP1 augments reverse transcriptase (RT) activity by enhancing the assembly of RT on viral RNA in vitro. Synthetic peptides corresponding to the binding motifs within IN that inhibited the IN-SIP1 interaction abrogated reverse transcription in vitro and in vivo. Furthermore, knockdown of SIP1 reduced intracellular stability and multimer formation of IN through proteasome-mediated degradation machinery. Taken together, SIP1 appears to stabilize functional multimer forms of IN, thereby promoting the assembly of IN and RT on viral RNA to allow efficient reverse transcription, which is a prerequisite for efficient HIV-1 infection

    Tau, prions and Aβ: the triad of neurodegeneration

    Get PDF
    This article highlights the features that connect prion diseases with other cerebral amyloidoses and how these relate to neurodegeneration, with focus on tau phosphorylation. It also discusses similarities between prion disease and Alzheimer’s disease: mechanisms of amyloid formation, neurotoxicity, pathways involved in triggering tau phosphorylation, links to cell cycle pathways and neuronal apoptosis. We review previous evidence of prion diseases triggering hyperphosphorylation of tau, and complement these findings with cases from our collection of genetic, sporadic and transmitted forms of prion diseases. This includes the novel finding that tau phosphorylation consistently occurs in sporadic CJD, in the absence of amyloid plaques

    RNA interference approaches for treatment of HIV-1 infection

    Get PDF
    HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery

    Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family

    Get PDF

    Anti-inflammatory Components from Functional Foods for Obesity

    Get PDF
    Obesity, defined as excessive fat accumulation that may impair health, has been described throughout human history, but it has now reached epidemic proportions with the WHO estimating that 39% of the world’s adults over 18 years of age were overweight or obese in 2016. Obesity is a chronic low-grade inflammatory state leading to organ damage with an increased risk of common diseases including cardiovascular and metabolic disease, non-alcoholic fatty liver disease, osteo-arthritis and some cancers. This inflammatory state may be influenced by adipose tissue hypoxia and changes in the gut microbiota. There has been an increasing focus on functional foods and nutraceuticals as treatment options for obesity as drug treatments are limited in efficacy. This chapter summarises the importance of anthocyanin-containing fruits and vegetables, coffee and its components, tropical fruit and food waste as sources of phytochemicals for obesity treatment. We emphasise that preclinical studies can form the basis for clinical trials to determine the effectiveness of these treatments in humans
    corecore