411 research outputs found

    A phase field formulation for hydrogen assisted cracking

    Get PDF
    We present a phase field modeling framework for hydrogen assisted cracking. The model builds upon a coupled mechanical and hydrogen diffusion response, driven by chemical potential gradients, and a hydrogen-dependent fracture energy degradation law grounded on first principles calculations. The coupled problem is solved in an implicit time integration scheme, where displacements, phase field order parameter and hydrogen concentration are the primary variables. We show that phase field formulations for fracture are particularly suitable to capture material degradation due to hydrogen. Specifically, we model (i) unstable crack growth in the presence of hydrogen, (ii) failure stress sensitivity to hydrogen content in notched specimens, (iii) cracking thresholds under constant load, (iv) internal hydrogen assisted fracture in cracked specimens, and (v) complex crack paths arising from corrosion pits. Computations reveal a good agreement with experiments, highlighting the predictive capabilities of the present scheme. The work could have important implications for the prediction and prevention of catastrophic failures in corrosive environments. The finite element code developed can be downloaded from www.empaneda.com/code

    Soft modes near the buckling transition of icosahedral shells

    Full text link
    Icosahedral shells undergo a buckling transition as the ratio of Young's modulus to bending stiffness increases. Strong bending stiffness favors smooth, nearly spherical shapes, while weak bending stiffness leads to a sharply faceted icosahedral shape. Based on the phonon spectrum of a simplified mass-and-spring model of the shell, we interpret the transition from smooth to faceted as a soft-mode transition. In contrast to the case of a disclinated planar network where the transition is sharply defined, the mean curvature of the sphere smooths the transitition. We define elastic susceptibilities as the response to forces applied at vertices, edges and faces of an icosahedron. At the soft-mode transition the vertex susceptibility is the largest, but as the shell becomes more faceted the edge and face susceptibilities greatly exceed the vertex susceptibility. Limiting behaviors of the susceptibilities are analyzed and related to the ridge-scaling behavior of elastic sheets. Our results apply to virus capsids, liposomes with crystalline order and other shell-like structures with icosahedral symmetry.Comment: 28 pages, 6 figure

    A phase field model for elastic-gradient-plastic solids undergoing hydrogen embrittlement

    Get PDF
    We present a gradient-based theoretical framework for predicting hydrogen assisted fracture in elastic-plastic solids. The novelty of the model lies in the combination of: (i) stress-assisted diffusion of solute species, (ii) strain gradient plasticity, and (iii) a hydrogen-sensitive phase field fracture formulation, inspired by first principles calculations. The theoretical model is numerically implemented using a mixed finite element formulation and several boundary value problems are addressed to gain physical insight and showcase model predictions. The results reveal the critical role of plastic strain gradients in rationalising decohesion-based arguments and capturing the transition to brittle fracture observed in hydrogen-rich environments. Large crack tip stresses are predicted, which in turn raise the hydrogen concentration and reduce the fracture energy. The computation of the steady state fracture toughness as a function of the cohesive strength shows that cleavage fracture can be predicted in otherwise ductile metals using sensible values for the material parameters and the hydrogen concentration. In addition, we compute crack growth resistance curves in a wide variety of scenarios and demonstrate that the model can appropriately capture the sensitivity to: the plastic length scales, the fracture length scale, the loading rate and the hydrogen concentration. Model predictions are also compared with fracture experiments on a modern ultra-high strength steel, AerMet100. A promising agreement is observed with experimental measurements of threshold stress intensity factor KthK_{th} over a wide range of applied potentials

    Suppressed plastic deformation at blunt crack tips due to strain gradient effects

    Get PDF
    AbstractLarge deformation gradients occur near a crack-tip and strain gradient dependent crack-tip deformation and stress fields are expected. Nevertheless, for material length scales much smaller than the scale of the deformation gradients, a conventional elastic–plastic solution is obtained. On the other hand, for significant large material length scales, a conventional elastic solution is obtained. This transition in behaviour is investigated based on a finite strain version of the Fleck–Hutchinson strain gradient plasticity model from 2001. The predictions show that for a wide range of material parameters, the transition from the conventional elastic–plastic to the elastic solution occurs for length scales ranging from 0.001 times the size of the plastic zone to a length scale of the same order of magnitude as the plastic zone
    • …
    corecore