
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Accounting for Fiber Bending Effects in Homogenization of Long Fiber Reinforced
Composites

Poulios, Konstantinos; Niordson, Christian Frithiof

Published in:
Proceedings of the 20th International Conference on Composite Materials

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Poulios, K., & Niordson, C. F. (2015). Accounting for Fiber Bending Effects in Homogenization of Long Fiber
Reinforced Composites. In Proceedings of the 20th International Conference on Composite Materials ICCM20
Secretariat.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/83999718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/accounting-for-fiber-bending-effects-in-homogenization-of-long-fiber-reinforced-composites(7bfe3e30-c385-4717-8952-666dbb281f6a).html


20th International Conference on Composite Materials
Copenhagen, 19-24th July 2015

ACCOUNTING FOR FIBER BENDING EFFECTS IN
HOMOGENIZATION OF LONG FIBER REINFORCED COMPOSITES

Konstantinos Poulios1, Christian F. Niordson2

Department of Mechanical Engineering, Technical University of Denmark
Nils Koppels Allé, Building 403, DK-2800 Kgs. Lyngby, Denmark

1Email: kopo@mek.dtu.dk 2Email: cn@mek.dtu.dk

 Keywords: Homogenization, Fiber bending stiffness, Finite-element
 

ABSTRACT

The  present  work  deals  with  homogenized  finite-element  models  of  long  fiber  reinforced
composite materials in the context of studying compressive failure modes such as the formation of
kink  bands  and  fiber  micro-buckling.  Compared  to  finite-element  models  with  an  explicit
discretization of the  material  micro-structure including individual  fibers,  homogenized models  are
computationally more efficient and hence more suitable for modeling of larger and complex structure.
Nevertheless, the formulation of homogenized models is more complicated, especially if the bending
stiffness of the reinforcing fibers is to be taken into account. In that case, so-called higher order strain
terms need to be considered. In this paper, important relevant works from the literature are discussed
and numerical results from a new homogenization model are presented. The new model accounts for
two independent constitutive laws for the fiber and the matrix materials, respectively expressed in the
frameworks of hyper-elasticity and hyper-elasto-plasticity.  The presented numerical  results  include
comparisons between the homogenized model and an explicit discretization of the composite micro-
structure. Both models are in good agreement. In cases where the fiber bending stiffness is significant,
the homogenized finite-element model exhibits size-scale dependent material behavior, as predicted by
the model with explicitly discretized individual fibers.

1 INTRODUCTION

Compared to homogeneous materials of the same weight or price, long fiber reinforced composites
normally offer superior mechanical strength with the exception of compressive loading. Failure modes
under compression include the formation of kink bands, fiber micro-buckling and debonding, which
have all been extensively studied both experimentally and numerically. For instance in [1], Kyriakides
et al. address the compressive failure of long fiber reinforced composites both presenting experimental
and numerical results. The latter are based on a finite-element model with an explicitly discretized
material  micro-structure.  The experimental  part  in  [1],  was  not  limited  to  the  demonstration of  a
compressive  failure  mechanism  and  the  evaluation  of  effective  material  properties  for  a  fiber
reinforced composite material. It also assessed fiber alignment imperfections in the tested samples
quantitatively  and  determined  material  properties  of  the  individual  constituents.  Both  the  fiber
misalignment data and the constituent properties were important input for the theoretical part of the
paper.  In  total,  the  results  presented  in  [1]  confirmed  the  impact  of  fiber  imperfections  on  the
compressive  limit  load  of  the  tested  composite  and  demonstrated  both  experimentally  and
theoretically,  that inclined kink bands of a rather reproducible width start to form directly after the
limit load.

In [2], Fleck & Shu provided an exclusively theoretical study.  They introduced a homogenized
finite-element model capable of capturing the fiber bending stiffness and they presented a series of
practical  numerical  examples  based  on  that  model.  The  main  characteristic  of  their  model  is  the
internal  kinematic  variable θ ,  which represents  a  micro-rotation of  the  fibers.  Based on the two
components of the homogenized displacement  field  u and the additional variable θ ,  a  2D finite-
element model with three unknowns per node was formulated. A higher-order stress (couple stress),
work conjugate to the angle θ  was identified and the equivalence of the derived formulation with the
Cosserat theory was demonstrated. With regard to the provided numerical results a set of examples
was studied, with a fiber waviness imperfection running through the complete sample height, similar
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to the examples studied in [1]. In a second set of examples the assumed fiber imperfection was limited
in an elliptical region at the center of the sample and the impact of the size of this elliptical region on
the critical load was investigated.

Plasticity in [2] was modeled through a Ramberg-Osgood constitutive law, expressed in terms of
effective stress and strain measures for the composite. A different approach regarding the modeling of
plasticity was followed in [3], where Christoffersen & Jensen provided a homogenized finite-element
formulation, which was based on two independent material laws for the two constituents of long fiber
reinforced composites. This is a micro-mechanical description of the composite material, compared to
the rather phenomenological plasticity model utilized in [2]. Nevertheless, the model presented in [3]
does not account for the bending stiffness of the reinforcing fibers.

The numerical results presented in this paper are obtained with two different models, one with an
explicit  discretization  of  individual  fibers,  as  in  [1]  and  [4],  and  a  homogenized  model  which
combines  the  advantages  of  [2]  and  [3].  The  role  of  the  individual  fiber  model  is  to  serve  as  a
reference for the homogenized one.

2 HOMOGENIZED MODEL

This section provides  some basic information regarding the homogenized finite-element  model
considered  in  this  paper.  Similar  to  [2],  this  new  model,  relies  on  additional  internal  kinematic
variables  for  describing  the  deformation  state  of  the  material  micro-structure.  In  contrast  to  [2]
however, which requires only an one-dimensional internal kinematic variable θ , corresponding to the
rotation of the fiber cross section at the micro-level, our model relies on a two-dimensional internal
kinematic variable dB , which captures possible deviations between the deformation states of the fiber
and the matrix in a more generic way. Fig. 1 illustrates the impact of each component of dB  on the
deformation state of the material micro-structure.

Figure 1: Deformation states of the composite micro-structure corresponding to different values of the
internal kinematic variable dB .

Adding the degrees of freedom of the internal kinematic variable dB  to the two degrees of freedom
of the homogenized displacement variable  u , our homogenized finite-element model requires four
kinematic degrees of freedom per node, instead of three nodal degrees of freedom considered in [2]. In
addition, a plastic multiplier variable γm  describing isotropic hardening of the matrix material is also
considered  as  an  unknown,  resulting  a  total  of  five  nodal  degrees  of  freedom.  The  cost  of  the
additional two variables is compensated by the greater flexibility and generality of our formulation as
well as by its stricter micro-mechanical foundation.

A detailed description of this homogenized model can be found in [5]. Its basic characteristic is that
two independent deformation gradients are defined for the matrix and the fiber materials respectively,
through closed form expressions in terms of the kinematic variables u  and dB :

Fm=I+∇ u+
1
cm

dB NB
T (1)
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F f=I +∇ u−
1
c f

dB NB
T (2)

In  these  expressions,  cm  and  c f  are  the  volume  fraction  ratios  of  the  matrix  and the  fiber
materials  respectively,  with  cm+c f =1 .  The  unit  vector  NB  corresponds  to  the  direction
perpendicular to the reinforcing fibers in the undeformed configuration.

In order to account for the bending stiffness of the fibers, an enhanced version of F f  is defined as
a function of the signed distance χB  from the fiber middle line:

~F f (χB)=F f −χB
1
c f

∇ dB N A N A
T (3)

where  N A  is  the  unit  vector  representing  the  direction  parallel  to  the  fibers  in  the  undeformed
configuration.

With  the  deformation  gradients  in  each  constituent  given  by  expressions  (1)  and  (3),  force
equilibrium and plastic deformation can be modeled in the frameworks of hyper-elasticity and hyper-
elasto-plasticity for the fiber and the matrix phases respectively. In hyper-elastic material models, with
or without plastic deformation, the material response is described by a free energy density function in
terms  of a frame indifferent  measure  of the corresponding deformation gradient,  like e.g.  the left
Cauchy-Green  tensor,  defined  as  F FT .  Such  free  energy functions  can  be  written  for  the  two
constituents as:

ψm=ψm(Fm
e Fm

e T
)=ψm(∇ u ,dB , γm) (4)

ψf=ψf (
~
F f

~
F f

T
)=ψf (∇ u ,dB ,χB ∇ dB) (5)

In  expression  (4),  Fm
e  is  the  elastic  part  of  Fm ,  defined  through  the  usual  multiplicative

decomposition of the deformation gradient. For more details on the multiplicative split in the context
of hyper-elasto-plasticity, the reader is referred to [5] or [6]. In contrast to the matrix phase, the fiber
material is assumed to remain in the elastic regime. The total virtual work desnsity for the composite
material can be written, based on (4) and (5), as:

δψ=cmδψm+c f
1
h f
∫−hf /2

hf /2
δψf dχB=δψ(∇δu ,δdB ,∇δdB ,δγm)

(6)

Note that in expression (6), χB  is eliminated by performing an analytical integration through the
fiber height h f .

Force equilibrium is expressed by the equality between the internal virtual work from (6) and the
virtual work of external forces at the boundary and the volume of the considered body. Imposing this
equality for variations δu  and δd B  defined through the basis functions of the corresponding finite-
element approximations, provides a sufficient number of equations for solving for the unknowns u
and  dB .  An  additional  equation  is  required  for  solving  also  for  the  plastic  multiplier γm .  This
remaining equation is the plasticity consistency condition:

Y m(γm)=√ 3
2
‖σm(∇ u , dB ,γm)‖

(6)

where Y m  is the matrix material yield limit (including hardening) and σm  is the Cauchy stress in the
matrix material.  Eq.  (6) is  imposed inside the plastic zone in a weighted residual  sense,  with the
weighting functions δγm  corresponding to the basis functions of the finite-element approximation of
the plastic multiplier. Outside the plastic zone the condition γm=γm0  is imposed also in a weighted
residual sense, with γm0  standing for the plastic multiplier value at the previous time step.
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3 NUMERICAL RESULTS

Fig. 2 shows a square sample of a fiber reinforced composite material, with the reinforcing fibers
nominally aligned in the horizontal direction. The sample is fixed at its left side, while its right side is
free to move as a rigid body in the vertical direction while its horizontal displacement is prescribed,
e.g. through a double acting hydraulic cylinder. The fiber height h f  is equal to 0.015 mm and there
are 40 fibers, evenly distributed along the sample height. These data combined with the sample height
of 1 mm result  in  a  fiber content  c f  equal  to  0.6.  The considered sample  includes  a prescribed
sinusoidal waviness imperfection of the fibers with amplitude of 0.01 mm and half-period equal to the
sample length of 1 mm, which is constant through the sample height.

1 mm

1 mm

Figure 2: Fiber reinforced composite sample with 40 fibers and c f =0.6  and boundary conditions.

The  Young's  modulus  of  the  reinforcing  fibers  is  Ef =3.5 GPa  and  their  Poisson's  ratio  is
νf =0.263 ,  while  the  matrix  material  has  a  Young's  modulus  Em=0.1 GPa,  a  Poisson's  ratio
νm=0.356  and a Ramberg-Osgood hardening behavior with initial  yield stress  σ ym=0.013 Em ,

yield offset  αm=3/7  and hardening exponent nm=4 . All data for this example are taken from the
main example presented in [4].

3.1 Results from the model with an explicit discretization of individual fibers

The mesh of the individual fiber model, shown in Fig. 2, consists of 30 elements along the length
of the sample, 2 elements along the height of each fiber layer and 2 elements along the height of each
matrix layer. The displacement unknown u  is defined in both the matrix and the fiber elements, while
a  plastic  multiplier  unknown  γm  is  defined  only in  the  matrix  elements.  Both  u  and  γm  are
approximated with eight-node quadrilateral elements.

Fig.  3 shows deformation states of the considered sample at  different  values of the prescribed
horizontal compression. The left picture corresponds to the limit load at buckling initiation, equal to
25.88 kN,  while  the  right  pictures  corresponds to  a nominal  compression of 2%.  The color  scale
corresponds to the increase of the plastic multiplier γm  in the matrix material during the current step.

Fig. 4 shows equivalent results for an increased number of 80 fiber along the sample height. The
fiber height is reduced accordingly to 0.0075 mm in order to preserve the initial fiber content of 0.6.
The  limit  load  corresponding  to  the  left  picture  of  Fig.  4  is  25.5  kN.  Compared  to  Fig.  3,  the
deformation presented in the right picture of Fig. 4 for a compression of 2% exhibits a considerably
sharper bending radius at the beginning of the observed kink band.
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Figure 3: Deformation states of the composite material sample with 40 fibers at the limit load (left)
and at a nominal compression of 2% (right) for an explicit discretization of individual fibers.

Figure 4: Deformation states of the composite material sample with 80 fibers at the limit load (left)
and at a nominal compression of 2% (right) for an explicit discretization of individual fibers.

3.2 Results from the homogenized model

In the homogenized model there is no distinction between matrix and fiber elements. The whole
structure is discretized by 20 times 20 elements in the horizontal and vertical directions respectively.
All  three  unknowns  u ,  dB  and  γm  are  discretized with eight-node quadrilateral  elements.  The
results shown in Figs. 5 and 6 are equivalent to the results of Figs. 3 and 4 respectively. It appears that
the homogenized model can capture the shape and the extent of the zone where plastic deformation in
the matrix materials takes place, both close to the buckling initiation as well as in the post-buckling
phase. Moreover the homogenized model captures the different bending radius at the beginning of the
kink band, as it  was also observed in the results from the individual fiber model.  The limit  loads
corresponding to the left pictures of Figs. 5 and 6 are 27.0 and 26.6 kN respectively. These values are
approximately 4% higher than the corresponding limit loads from section 3.1.



Konstantinos Poulios and Christian F. Niordson

Figure 5: Deformation states of the composite material sample with 40 fiber at the limit load (left) and
at a nominal compression of 2% (right) for the homogenized model.

Figure 6: Deformation states of the composite material sample with 80 fiber at the limit load (left) and
at a nominal compression of 2% (right) for the homogenized model.

3.3 Comparison

A preliminary  comparison  of  the  results  presented  in  subsections  3.1  and  3.2  shows  a  good
agreement between the homogenized and the reference model. This section includes some additional
results for assessing the validity of the homogenized model. Figs. 7 and 8 show the axial force versus
compression responses calculated for 40 and 80 fibers based on the reference and the homogenized
model,  respectively.  Apart  from  the  slightly  higher  buckling  initiation  load  predicted  by  the
homogenized model, which has already been mentioned, comparison of the diagrams in Figs. 7 and 8
shows that the homogenized model  captures the impact of the fiber diameter on the post-buckling
response very accurately.

The incremental values of γm  presented in Figs. 3 to 6 show a good agreement between the two
models with respect to the shape of the plastic zone and the intensity of the plastic flow. Nevertheless,
these incremental quantities depend on the the load step size and their magnitudes are not directly
comparable in a variable load step simulation. More appropriate for a quantitative comparison is the
the cumulative value of γm . Figs. 9 and 10 provide a comparison of the two models with regard to
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the evolution of the plastic multiplier  γm  at the center of the sample as a function of the applied
nominal  compression. The slightly shifted buckling point is visible also in these comparisons, but
otherwise there is a very good agreement between the two models both for the case with 40 fibers as
well as for the case with 80 fibers.

Figure 7: Axial force versus compression response from the individual fiber model.

Figure 8: Axial force versus compression response from the homogenized model.
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Figure 9: Evolution of the plastic multiplier in the matrix material at the center of the fiber
composite sample with 40 fibers.

Figure 10: Evolution of the plastic multiplier in the matrix material at the center of the fiber
composite sample with 80 fibers.
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4 CONCLUSIONS

The numerical results presented in this work demonstrated the capabilities and the level of
accuracy of a homogenized model for long fiber reinforced composite materials, compared to
an  equivalent  model  with  an  explicit  discretization  of  individual  fibers.  The  comparison
between  the  two  models  revealed  a  generally  good  agreement.  More  specifically,  the
homogenized  model  was  capable  of  simulating  the  formation  of  a  kink  band  during  the
compression  of  a  fiber  reinforced  composite  sample,  including  the  impact  of  the  fiber
diameter on the initiation and evolution of the observed kink band. The deviation between the
two models with regard to the buckling initiation load was limited to 4%. Moreover,  this
deviation was not related to the fiber bending stiffness,  as it was the same for both fiber
diameters that were studied.
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