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Suppressed plastic deformation at blunt crack tips
due to strain gradient effects

Lars P. Mikkelsen* and Stergios Goutianos

Materials Research Division, Risø National Laboratory for Sustainable Energy, 
Technical University of Denmark, DK-4000 Roskilde, Denmark

Abstract: Large deformation gradients occur near a crack-tip and strain gradient dependent 
crack-tip deformation and stress fields are expected. Nevertheless, for significant small length 
scales, a conventional elastic-plastic solution is obtained while for significant large length scales, 
a conventional elastic solution is obtained. This transition is investigated based on a finite strain 
version of the Fleck-Hutchinson strain gradient plasticity model from 2001. The predictions
shows that for a large range of material parameters, the transition from the conventional elastic-
plastic to the conventional elastic solution occurs for length scales going from 0.001 times the 
size of the reference size plastic zone to a length scale of the same order of magnitude. 

  
Key words: blunt crack tip; strain gradient dependent plasticity; finite strain theory; finite 
elements.  

1  Introduction
The deformation field near a crack-tip exhibits large plastic strain gradients (Fleck and 

Hutchinson, 1997) whereas an increasing number of experimental work reveals a size 

dependence of the plastic flow at the micron scale in the presence of strain gradients (Fleck et al., 

1994; Poole, Ashby and Fleck, 1996; Stelmashenko et al., 1993; Stölken and Evans, 1998). Such 

a size dependency is absent in a conventional elastic-plastic theory. Therefore a plasticity theory 

which includes strain gradient effects will give more realistic predictions in the near crack tip 

region. Based on the Fleck and Hutchinson (1993) strain gradient plasticity theory which only 

includes rotation gradient dependency, Xia and Hutchinson (1996) found only a small effect on 

the stress field at a mode I loaded crack tip. On the other hand, still based on a small strain  

theory but including both stretch and rotation gradients in the phenomenological based strain 

gradient plasticity models (Fleck and Hutchinson, 1997; Fleck and Hutchinson, 2001) or in the 

mechanism-based based strain gradient plasticity models (Gao et al., 1999) a substantial increase 

in tractions ahead of the crack tip is observed (Chen and Wang, 2002; Chen et al., 1999; 
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Komaragiri et al., 2008; Jiang et al., 2001).

From conventional plasticity studies, it is known that large deformation occurs in the blunting 

process of a crack tip (McMeeking, 1977) and that a small strain analysis has a tendency to 

underestimate the crack resistance during crack growth (Tvergaard and Hutchinson, 1992). On 

the other hand, based on a small strain theory, Wei and Hutchinson (1999) has shown a large 

effect of the strain gradient dependent term on the crack-growth behaviour. Only few studies 

based on a finite deformation version of a strain gradient dependent plasticity model have been 

performed, (Hwang et al., 2003). 

Based on the finite strain version (Niordson and Redanz, 2004) of the strain gradient dependent 

plasticity model (Fleck and Hutchinson, 2001) a extensive parametric study of the crack tip field 

has been performed. The focus has been on the transition from predictions coinciding with the 

conventional elastic-plastic solution for suficiently small length scales to predictions coinciding 

with the conventional elastic solution for sufficiently large length scales. The size of the length 

scales should be correlated to a reference size of the plastic yielding zone and intermediate

predictions are found for length scales in the region / [0.001;1]pR �� . For material length scales 

outside this region, either a conventional elastic-plastic simulation or a conventional elastic 

simulation are sufficient regarding both prediction of stationary crack-tip fields and crack-growth 

simulations. 

2  Finite deformation strain gradient plasticity model
The material behaviour is modeled by a finite strain generalization (Niordson and Redanz, 2004)

of the strain gradient plasticity theory of Fleck and Hutchinson (2001) in where an updated 

Langrangian formulation is adopted based on the work of (McMeeking and Rice, 1975; Yamada 

and Sasaki, 1995). In the following, only the brief description of the theory will be given. For 

more details see the paper by Niordson and Redanz (2004) together with its references to (Fleck 

and Hutchinson, 2001; Niordson and Hutchinson, 2003).

A standard power-law hardening material law is used with the hardening modulus h and the 
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tangent modulus tE
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where E , y� and n denote the Youngs modulus, the initial yield stress and the hardening 

exponent of the material, respectivly. Different from a conventional plasticity theory, the tangent 

modulus tE in (1) depends on the gradient dependent plastic strain pE which is given by the 

incremental relation 
2 2

, , , ,=p p p p p p p
ij i j i iE A B C� � � � � �� � �� � � � � � � (2)

where the tensors ijA , iB , and C (Fleck and Hutchinson, 2001) depend on three length material 

length scales, 1 2 3, ,� � � , the outward normal to the plastic yield surface, ( )3 /(2 )ij ij em S � , and 

their spatial derivatives, ,ij km . The increment of the effective plastic strain is given by 

3 / 2p p p
ij ij� � �� � � , the von Mises’ stress by ( ) 3 / 2e ij ijS S�  and the deviatoric stress by 

= / 3ij ij ijS � � �� where ij� denotes the Cauchy stress tensor and ij� denotes Kronecker’s delta. 

A standard tensor notation is adopted where latin indices range from 1 to 3 and repeated indices 

denote summation.  The dotted terms denote incremental quantities and terms with ,( ) i denote

partial derivatives with respect to the coordinate ix .

The equilibrium equation for the strain gradient plasticity model can be formulated through the 

virtual work in the current configuration (Fleck and Hutchinson, 2001):

( ) ,( ( ) ) = ( )p p p
ij ij e i i i iV S

Q dV T u t dS� �� � �� � �� � ��� � � �� �� � � �� (3)

where ij� is the total strain. The term Q is defined as the work conjugate to the plastic strain p�

which on incremental form is given by 
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The term ,
p

i i� �� in (3) represents the contribution due to the plastic strain gradients where i� are

the higher order stresses. 

3  Finite element formulation
Rewritting the virtual work (3) on an incremental form, see Niordson and Redanz (2004)

including the plastic strain increment, p�� , as an additional fundamental unknown the finite 

element discretisation of the displacements and the plastic strain increments

=1 =1
= , =

k l
n n p n p

i i n
n n

u N D M� �� �� � �� (5)

leads to a equation system on the following form

=p

D
�

� � � �� � � �
�� � � �� � � �
� �� �� � � �

e ep 11
T
ep p 22

K K CF
K K CF

��
��

(6)

where expressions for all the terms in (6) can be found in Niordson and Redanz (2004). In (5), the 
n
iN and nM are the shape functions used for the displacement increment interpolation and the 

effective plastic strain increment interpolation, k and l are the number of nodes in the element 

used for the interpolations. The second term on the right-hand side of (6) represents the 

equilibrium correction factor, where 1C is the standard force equlibrium term (from where also 

the reaction forces can be extracted) and 2C is a non-standard equlibrium term related to the 

increments of the effective plastic strain. In the current simulations, only 1C is included in the 
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equilibrium correction term and �2C 0 .

A combined 8 and 4 noded element with 8k  and 4l  in (5) is used where n
iN and nM are 

given by standard isoparametric shape functions. The isoparametric geometric map from the local 

element coordinate system ( , )� � to the global coordinate system 1 2( , )x x is based on the n
iN shape 

function

=1
( , ) = ( , )

k
n n

i i i
n

x N x� � � �� (7)

The element is integrated using 2x2 Gauss points. This combination was selected to avoid 

locking in the shear-dominated part near the crack tip and spurious zero energy modes in the 

effective plastic strain. For comparison, when both the displacements and effective plastic strain 

degrees of freedom were approximated by an 8-noded isoparametric element with 3x3 integration

points significant locking in the effective plastic strain was found, see also Mikkelsen (2007). 

From the incremental values the updated strains, ij� , stresses, ij� , higher order stress, i� and Q 

are found at each integration point. If an integration point is currently yielding, the effective 

plastic strain, pE is updated. The yielding criterion for an integration point is > maxQ Q where 

maxQ is the maximum value of Q obtained in the integration point with the initial value 

max yQ � . Elastic unloading of an integration point starts when < 0p�� . In the elastic region a 

sufficiently large hardening modulus, 510elastich E is introduced to avoid spurious effective 

plastic strain increments. This corresponds to a internal elastic/elastic-plastic boundary condition 

0p� � (Niordson, 2008). It has been found earlier by Mikkelsen (2007) that a converging 

solution is obtained for 210elastich E� .

4  Crack-tip model
A semi-infinite crack is modelled in a homogeneous elastic-plastic solid under plane strain 

conditions. Due to symmetry only half the crack tip is modelled as depicted in Figure 1 where 

symmetry boundary conditions are applied along the symmetry line in front of the crack tip.  In 
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                                    (a)                                                              (b)
Figure 1 (a) Finite element mesh for the crack tip problem (b) Near-tip mesh for the mesh with the initial 
crack tip radius tipR . 

Figure 1, tipR indicates the initial radius of the crack tip. The outer radius, outerR , where the IK -

field is prescribed as the displacements in the x- and y-directions
2

1
2

2

( / 2)[ 1 2 ( / 2)]
=

2 2 ( / 2)[ 1 2 ( / 2)]
outerIu cos sinRK

u G sin cos
 !  

"  !  
� #� �� #

� $ � $
� �� % � %

(8)

is chosen to be sufficiently large such that small scale yielding condition is satisfied. In equation 

(8), the angle  is a measurement from the symmetry line in front of the crack tip, the term G

denotes the shear modulus of the material and the term ! = (3 4 )&� for the plane strain case.

Except for a few cases, where 510outer tipR R , a outer radius of 310outer tipR R is found to be 

sufficient in most of the finite element simulations giving a converged solution. In the context of 

the current strain gradient plasticity used (Fleck and Hutchinson, 2001) additional higher order 

boundary conditions need to be specified. Along all boundaries, no constraint is applied on p��

corresponding to vanishing higher order stresses. This is do to the free surface along the crack 

face, the symmetry line in front of the crack tip and no plastic deformation near the outer 

boundary at outerr R . 

The load level IK will be represented in the study by a reference size of the plastic zone

2
1

3
I

p
y

KR
" �
� �

 � 	� 	

 �

(9)

A dimensional study shows that the stress field in a given point in the initial blunted crack tip 

region here shown as the normal stress at the initial blunted crack tip will depend on the 
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following dimensionless terms
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which make the basis for the parametric study. Later on, the predictions show that large 

incorporated material length scales result in finite element solutions coinciding with the purely 

elastic solution even though the material properties still include a yield stress and that it is the 

plastic strain gradients that are controlling the deformation stage. In order to compare the strain 

gradient dependent numerical predictions obtained in the following with classical elastic 

solutions, the analytical expressions are re-written using the reference size of the plastic zone, pR

as a measurement of the load level. The normal stress at the initial blunted crack tip /tip
y  � �

(Creager and Paris, 1967) can based on a small strain elastic model be re-written as

2 12
tip tip

p

y tiptip I

RK
E RE R
    � �

�"
 '  (11)

In addition, using the expression for the IK stress field in front of the crack tip and compare the 

von Mises stress ( ) 3 / 2e ij ijs s�  with the initial yield stress, y� , the actual size of the yielding 
size of the yielding region in the case of a large incorporated length scale can be estimated

/ 2

2 / 2
rr I

zz I

K r

K r
  � � "

� & "

#  �
$

 �%
  

( ) 0.24p a

p

R
R

'  (12)

where ( )p aR is measured from the surface of the blunted crack. 

5  Numerical results

Figure 2 shows the near crack tip normalized stress field / y  � � . The crack tip is loaded to a 

level where the reference size of the plastic zone is given by 20p tipR R . Comparing the two 

contour plots in Figure 2 it can be seen that a large incorporated length scale results in a higher 

stress level in the region near the crack tip while the stress fields are approaching each other 
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                     (a) 0.005 pR�                                                  (b) 0.1 pR�
Figure 2 Stress field / y  � � at the crack tip for / 0.01 ; 0.3 ; 5y E n� &   and the three length 

scales 1 2 3  � � � � loaded to / 20p tipR R  .

further away from the crack tip. The difference near the crack tip is due to the appearance of large 

plastic deformation gradients in the crack tip region, resulting in larger gradient dependent 

effective plastic strains, PE , increasing the amount a plastic flow resistance and thereby lower the 

amount of plastic deformation in this region. 

A crack tip loaded in mode I will in an isotropic homogeneous material results in crack growth 

along the symmetry line in front of the crack tip. Figure 2 shows the normalized stress, / y  � � , 

along this path for a fixed / 20p tipR R  ratio and with material parameters given by  

/ 0.01 ; 0.3 ; 5y E n� &   with the three length scales 1 2 3  � � � � . The two cases from 

Figure 2 are included in Figure 3. Along the x-axis, the normalized distance from the crack-tip in 

the deformed configuration is shown. For sufficiently small incorporated length 

scales, 0.0025 pR(� , the strain gradient dependent terms does not influence the simulations. 

Therefore, the predictions are given by a conventional elastic-plastic solution. On the other hand, 

for sufficiently large material length scales, 0.25 pR�� , the strain gradient dependent terms will 

dominate the solution preventing essentially any plastic deformation to develop. Therefore, the 

solution will for these large lengths scales coincide with the conventional elastic solution. Only in 

the intermediate region, 0.0025 / 0.25pR( (� , an advanced gradient dependent plasticity model 
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Figure 3 The stress field,   � , along the symmetry line in front of the crack tip.

is needed, predicting a significant dependency on the actually value of the incorporated length 

scale. 

Due to the finite radius of the initial crack tip, the stress value at the crack tip will have a finite 

value, tip
  � . For large incorporated length scales the solution only differ 2% from the small strain 

elastic prediction / 15.5tip
y  � �  from equation (11). Using the finite crack tip stress tip

  � to 

represent the stress field in front of the crack tip, a detailed parameter study is possible. 

In Figures 4-6, a parametric study with the offset from the material properties 

1 2 3/ 0.01 ; 0.3 ; 5 ;y E n� &     � � � � (13)

are investigated regarding the dependency of the crack tip stress on the parameters 

/ ; ; / ; /p tip y pR R n E R� � (14)

The study focuses on the transition from a conventional elastic-plastic solution for sufficiently 
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Figure 4 The stresses at the blunted crack tip, /tip
y  

� � , for different load levels.

small length scales to the elastic solution for sufficiently large length scale. By normalizing the 

length scale with the reference size of the plastic zone, a rather similar transition region is 

obtained for all the investigated /p tipR R ratios. 

Figure 4 shows the dependency of the ratio between the reference of the plastic zone and the 

initial radius of the crack tip, /p tipR R , on the crack tip stress, /tip
y  � � . From Figure 4, it can be 

seen that for all the load levels studied for the default case shown in (13), the transition from the 

conventional elastic-plastic solution to the conventional elastic solution occurs for length scale in 

the range 3/ [10 ;1]pR
��� . For length scale / 0.001pR (� the predictions coincide with a solution 

based on a conventional 2J � flow theory while a purely elastic prediction is obtained for 

/ 1pR �� . Even for much larger load levels approaching the case of a sharp crack, see later, the 

transition is found in nearly the same length scale range switching slightly towards a little smaller 

length scales for higher /p tipR R ratios. 

The dependency on the strain hardening exponent, n , is shown in Figure 5. The stress level at the 
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Figure 5 The stresses at the blunted crack tip, /tip
y  

� � , for different strain hardening exponents n .

crack-tip is found strongly to depend on the hardening exponent for small length scales in 

agreement with the corresponding dependency predicted by conventional plasticity theories, see 

e.g. McMeeking (1977). For large incorporated length scales, the predictions approach the elastic 

solution, a solution which is independent on the hardening exponent. For intermediate length 

scales, 3/ [10 ;1]pR
��� , a smooth transition is found for all hardening exponents. 
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Figure 6 The stresses at the blunted crack tip,  /tip
y  

� � , for (a) different yield stresses   (b) different 
Poisson’s ratios & .
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Figure 6 shows the dependency of the initial yield stress, /y E� , and Poisson’s ratio, & on the 

normalized normal stress /tip
y  � � at the crack tip. Even though the dependency is found to be 

small for both cases, it is more pronounced for large incorporated length scale corresponding to 

the conventional elastic solution. Nevertheless, this dependency of the elastic solution is purely 

due to large strain effects. A small strain elastic simulation of the normalized stress variation 

/ y  � � around the crack tip results in coinciding solutions for different yield stresses and 

Poisson’s ratios. Regarding the Poisson’s ratios, this is in agreement with the fact that the linear 

elastic crack tip solution is independent of the elastic constitutive properties as all boundary 

conditions in principle can be given by prescribed stresses, see  Michell (1899). On the other 

hand, for small incorporated length scales and thereby with dominating plastic deformations the 

material will behave as a material with an effective Poisson’s ratio approaching ½ for all cases 

and no dependency on the elastic Poisson’s ratio will be expected. For a fixed ratio /p tipR R , a 

change in the yield stress corresponds to a different load level, IK , corresponding to (9). 

Nevertheless, due to the normalization of the stresses at the crack-tip, /tip
y  � � , the solutions are

found to nearly coincide for small incorporated material length scales � . 

Based on (Fleck and Hutchinson (1997) strain gradient dependent plasticity model in a small

strain version, Chen et al. (1999) predicted in a sharp crack tip analysis for / 0.1pR � , a large 

dependency of the stress field in the near crack tip field, 0.3tipx x� ( � when the Poisson’s ratio 

approaching 0.5. From the latter Figure 12 and Figure 13, it can be seen that this corresponds to a 

case where the stress field is approximately given by the elastic solution. The dependency in the 

present solution for a blunted crack based on a finite strain analysis does not show this strong 

dependency.  

Even though the stress field coincides with the conventional elastic solution for sufficiently large 

length scale it does not mean that the material is not yielding. Actually, the gradient dependent 

term is only active in the presence of plastic strain gradients. On the other hand, for sufficiently 

large material length scales, all significant plastic deformations at the crack-tip are suppressed by 

the gradient dependent term resulting essentially in a linear elastic behavior. The yielding region 
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Figure 7 The actual size of the yielding zone found for different hardening exponents. 

will in this “elastic” case have a size coinciding with the estimate ( ) / 0.24p a pR R  , see equation 

(12).  

Figure 7 shows the size of the yielding region measured from the crack tip to the end of the 

yielding zone along the center-line in front of the crack tip. This distance is normalized with the 

calculated reference size of the yielding region pR . For small incorporated length scales Figure 7

shows a large dependency of the size of the yielding zone on the hardening exponent. A 

dependency which, similar to Figure 5, vanishes for large incorporated length scales. For large 

length scales, the size is found to coincide with the elastic KI-field estimation, ( ) / 0.24p a pR R  .

In all the previous figures, the three length scales where chosen to be equal to each other 

1 2 3  � � � � even though this will rarely be the case in a real material. Figure 8 compares the 

case 1 2 3  � � � � with cases where only one of the three length scale is non-vanishing. In 

Figure 8 it can be seen that for a given length scale, � , 2 � � and 3 � � gives the smallest 

effects, while 1 � � gives the largest strain gradient effects. Actually the case 1 � � is seen to 
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Figure 8 The stresses at the blunted crack tip, /tip
y  

� � , for materials with different combinations of length 
scales
results in a larger effects than  1 2 3  � � � � indicating that the length scales 2� and 3� have 

a reducing effect on 1� with respect to the size of the stress level at the crack tip, tip
  � . 
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Figure 9 The stresses at the blunted crack tip, /tip
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� � , for materials with a fixed length scale  
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Figure 10 The stresses variation, / y  
� � , in front of the blunted crack tip.

The reducing effect of 2� and 3� is studied in Figure 9 where the length scale 1 0.025 pR� is 

kept constant while the other two length scales are varied. From Figure 9 it can be seen that it is 

the length scale 3� which has the largest reducing effect on the length scale 1� . Fleck and 

Hutchinson (2001) noted that the effects of the length scales 2� and 3� disappear for vanishing 

rotational gradients while the contribution from 1� comes both from stretching and rotational 

gradients. Therefore, the shear deformation at the crack-tip will introduce additional strain 

hardening due to the occurrence of the length scales 2� and 3� which will redistribute the stress 

field. These effect can be seen in Figure 10; A increasing size of the length scale 3� increases the 

overall normal stress level,   � , even though the peak stress at the crack tip is getting lower for 

some intermediate value of the third length scale 3� .

Figure 11 shows the conventional elastic and elastic-plastic stress variation in front of an initial 

blunted crack tip as a function on the ratio between the reference size of the plastic zone, pR , and 

the initial radius of the crack-tip, tipR . For a significant large /p tipR R ratio, the solution 
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Figure 11 The conventional elastic and elastic-plastic stresses variation, / y  
� � , in front of the blunted 

crack tip approaching a sharp crack tip.

converges to the solution given for a sharp crack tip in agreement with McMeeking (1977).  

Except for the large strain contribution, the converged elastic solution is simply given by KI

stress field / 2 / 3y pR x  � �  . The solution / 20p tipR R  corresponds to the solution shown 

earlier in Figure 3 and for / 300p tipR R � the solution is found to converge to the sharp crack-tip

solution. 

In the case of an initially sharp crack tip, Figure 12 shows the length scale dependent solution for 

the default case from equation (13). For this specific case, a transition from the conventional 

elastic-plastic solution for / 0.001pR (� to the elastic solution for / 0.5pR �� is observed. 

Similar to the predictions for the initial blunted crack-tips, it is only necessary to base the finite 

element simulation on an enhanced strain gradient dependent plasticity model for intermediate 

length scales, specified by the range 3/ [10 ;1]pR
��� . For smaller length scales a conventional 

elastic-plastic material model is sufficient, while the strain gradient dependent terms are 

Elastic solution

Elastic-plastic solution
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Figure 12 The stresses variation, / y  
� � , in front of an initial sharp crack tip.

dominant for larger length scale in such a way that all plastic deformation is essentially 

suppressed and predictions based on an elastic model are significant. 

Figure 13 shows the converged blunted shape of an initially sharp crack as a function of the 

normalized incorporated length scale / pR� . A similar transition to Figure 12 is observed in 

Figure 13 going from a conventional elastic-plastic solution for vanishing length scale to a elastic 

solution for significant large length scale 0.5 pR�� . Experimental measurement of the shape of 

the blunted crack tip could be a way to identify the influence of gradient dependent terms at a 

specific deformed crack-tip. Shih (1981) defined a measurement of the crack tip opening as the 

opening t� in an angle 45� behind the crack tip as indicated by the dotted line in Figure 13. For 

the specific default case, equation (13), the crack opening measurement (defined as the double of 

the one shown figure 13) is found to vary from the conventional elastic-plastic solution 

0.025t�  for / 0.001pR (� to the conventional elastic solution  0.0036t�  for / 0.5pR �� .
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Figure 13 The shape of the blunting of an initially sharp crack tip.

6  Discussion
Based on the normalized stress-level at the crack tip, /tip

y  � � , of an initially blunted crack a 

thorough parametric study has been performed investigating the strain gradient dependent

suppression of the plastic deformation at an initially blunted crack-tip in a homogeneous elastic-

plastic power-law hardening isotropic material. The study shows that for all material parameters

studied a transition from predictions coinciding the conventional elastic-plastic solution for 

0.001 pR(� to predictions coinciding the conventional elastic solution for pR�� is obtained. In the 

intermediate region 0.001 p pR R( (� , a smooth transition occurs. These results can be used judging 

whether a conventional elastic-plastic model, the more complex strain gradient dependent elastic-

plastic model or a simple linear elastic model are required predicting crack-tip properties. 

Therefore, based on a conventional crack-tip or crack growth problem, the size of the yielding 

region should be considered. If the size is larger than 1000 times the material length scale, a

conventional plasticity theory is sufficiently. On the other hand, if the size of the yielding region 

is less than the material length scale, essentially all plastic deformation will be suppressed and a 

conventional elastic prediction are sufficient. On the other hand, if the size is in the intermediate 
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range, a full strain gradient dependent plasticity simulation is necessary. 
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