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Abstract - The size-effect in metals containing distributed spherical voids is analyzed numer-

ically using a finite strain generalization of a length scale dependent plasticity theory. Results

are obtained for stress-triaxialities relevant in front of a crack tip in an elastic-plastic metal. The

influence of different material length parameters in a multi-parameter theory is studied, and it

is shown that the important length parameter is the same as under purely hydrostatic loading. It

is quantified how micron scale voids grow less rapidly than larger voids, and the implications

of this in the overall strength of the material is emphasized. The size effect on the onset of

coalescence is studied, and results for the void volume fraction and the strain at the onset of

coalescence are presented. It is concluded that for cracked specimens not only the void vol-

ume fraction, but also the typical void size is of importance to the fracture strength of ductile

materials.

1. INTRODUCTION

The resistance to crack growth in ductile materials depends strongly on nucleation and growth of

voids, which span several orders of magnitude from the sub-micron range to about 100 microns.

Voids can develop from micro-cracks nucleated at second phase particles by decohesion or by

particle fracture, and the characterization of the growth of such voids under different loading

conditions is important in order to understand ductile crack growth quantitatively. Extensive
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research has been directed toward modeling void growth and coalescence in order to obtain a

quantitative understanding of the influence of void distribution, material properties and loading,

on the basic mechanisms of void growth, and on bulk properties such as material response

and fracture toughness (see e.g. Rice and Tracey, 1969; Needleman, 1972; Gurson, 1977;

Tvergaard, 1982; Koplik and Needleman, 1988; Kysar et al., 2005; McElwain et al., 2006).

Studies focussing on the effect of void shape have also been carried out by Gologanu et al.

(1993, 1994) and Pardoen and Hutchinson (2000). These studies all rest on conventional models

of plasticity, which is size-independent. The focus of the present paper is on quantifying the

size-effect in void growth and coalescence relevant for sub-micron to micron size voids.

Due to gradient hardening metals exhibit size-effects on the micron scale. This has been

experimentally confirmed in a number of investigations such as in indentation (Stelmashenko

et al., 1993; Ma and Clarke, 1995; Swadener et al., 2002), in torsion (Fleck et al., 1994), and

in bending (Stölken and Evans, 1998; Haque and Saif, 2003). A number of models have been

proposed to model gradient hardening in metals. Among these are the lower-order theories by

Acharya and Bassani (1996) and Huang et al. (2004). However, most of the models that have

been proposed are of higher order nature resting on higher order stresses as work-conjugates

to higher order strains, and using higher order boundary conditions (Aifantis, 1984; Fleck and

Hutchinson, 1997, 2001; Gao et al., 1999; Gurtin, 2002; Gudmundson, 2004).

The experimental evidence of size-effects on the micron scale in metal plasticity, implies that

growth of micron sized voids also exhibit important size-effects. This can also be concluded

based on the close relationship that exists for the deformation fields under indentation and void

growth (Marsh, 1964; Johnson, 1970). Since size-effects in indentation are widely observed

in experiments (Stelmashenko et al., 1993; Ma and Clarke, 1995; Swadener et al., 2002), size

effects must also be important in void growth as argued by Wei and Hutchinson (2003). Sev-

eral researchers have investigated size-dependent void growth of single voids under hydrostatic

loading (Fleck and Hutchinson, 1997; Huang et al., 2000; Fleck and Hutchinson, 2001). Liu et

al., 2003 have extended the Rice-Tracey model of spherical symmetric void growth to account

size-effects, while Liu et al., 2005 have extended this model to account for changes in the void

shape during growth. A modified Gurson model accounting for the void size effect was pro-

posed by Wen et al. (2005). Niordson and Tvergaard (2006, 2007) have studied the influence

of constitutive length parameters on cavitation instabilities under very high stress triaxialities,
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for spherical and cylindrical voids. These void studies all aim at quantifying the intrinsic size

effect in porous materials under macroscopically homogeneous loading, due to strain gradients

on the micron scale around the voids. The main conclusion from the above studies is that void

growth is suppressed on the micron scale, which leads to increased strength and ductility of the

material, and that cavitation instabilities are delayed significantly.

A different form of size-effect in porous materials can be modeled using the nonlocal version

of the Gurson model developed by Leblond et al. (1994). In this model a delocalization effect

is introduced through a nonlocal measure of the porosity, and the associated material length

parameter pertains to the size of the voids and their distribution. Using cell model analyses

of localization in a void-sheet Tvergaard and Needleman (1997) found that the material length

parameter in this nonlocal model scales with the void radius when shear bands develop, whereas

it scales with the void spacing when localization takes place in a void-sheet perpendicular to the

major principal loading direction.

In the present paper the intrinsic size-effect in porous materials, due to void size, is studied

under moderate stress triaxialities as those in front of a crack tip in an elastic-plastic material.

The interaction of neighboring voids is accounted for using an axi-symmetric cell model, which

enables modeling of void growth to coalescence in a material with a uniform distribution of

initially spherical voids. The size-effect modeled here pertains to gradient hardening on the

micron scale.

2. MATERIAL MODEL

In order to model size-effects in void growth, the material around the voids is described by

length-scale dependent finite strain plasticity theory. The theory which is used is that of Fleck

and Hutchinson (2001), which was generalized to finite strains in Niordson and Redanz (2004).

The strain gradient plasticity theory by Fleck and Hutchinson (2001) employs three quadratic

invariants of the gradient of the plastic strain rate ρijk = ρjik = ε̇P
ij,k in order to introduce

hardening due to strain gradients. Plastic work in the material is performed due to the effective

plastic strain measure, EP , defined by the incremental relation

ĖP 2

= ε̇P 2

+ l21I1 + 4l22I2 + 8
3
l23I3 (1)

Here, ε̇P 2

= 2
3
ε̇P
ij ε̇

P
ij is the conventional measure of effective plastic strain rate, I1, I2 and I3 are

the three invariants of ρijk, and l1, l2 and l3 are three material length parameters, defining the
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length-scale on which gradient hardening becomes important.

A single parameter model, closely related to the theory by Aifantis (1984), was also proposed

by Fleck and Hutchinson (2001). For this model the effective plastic strain is defined by

ĖP 2

= ε̇P 2

+ l2∗ ε̇
P
,i ε̇

P
,i (2)

where l∗ is an alternative material length parameter.

The plastic strain increment is defined according to the usual relation for J2 flow theory

ε̇P
ij =

3

2

Sij

σ(e)

ε̇P = mij ε̇
P (3)

where Sij are the Cartesian components of the deviator of the Cauchy stress σij , the von Mises’

effective stress is σ(e) =
√

3
2
SijSij , and mij denotes the direction of the stress deviator.

Rewriting Equation (1) in terms of mij and ε̇P results in

ĖP 2

= ε̇P 2

+ Aij ε̇
P
,i ε̇

P
,j + Biε̇

P
,i ε̇

P + Cε̇P 2

(4)

where the tensors Aij , Bi and C depend on the three material length parameters l1, l2 and l3 as

well as on the spatial gradients of mij (for details see Fleck and Hutchinson, 2001).

Aiming at an updated Lagrangian formulation the principle of virtual work is stated using the

current configuration as reference (see Niordson and Redanz, 2004)

∫

V

(

5
ς ij δε̇ij − σij (2ε̇ikδε̇kj − ėkjδėki) +

(

q̇ − σ̇ς
(e)

)

δε̇P +
∨
ρi δε̇P

,i

)

dV (5)

=

∫

S

(

Ṫ0iδu̇i + ṫ0δε̇
P
)

dS

The Jaumann rate of the Kirchhoff stress is denoted
5
ς ij , while q̇ is the work conjugate to the

plastic strain, εP , and
∨
ρi is the convected derivative of the higher order Kirchhoff stress. With

the displacement vector denoted by ui, the total strain rate is denoted by ε̇ij = 1
2
(u̇i,j + u̇j,i),

and the rate of the displacement gradient is ėij = u̇i,j . The determinant of the metric tensor is

denoted J , and the relation between the Kirchhoff stress, ςij , and the Cauchy stress, σij , is given

by ςij = Jσij . Similarly, the relation between the higher order Kirchhoff stress, ρi, and the true

higher order stress, τi, is given by ρi = Jτi. The effective stress enters the principle of virtual

work through σς
(e) = Jσ(e). The right-hand side of equation (5) consists of the regular traction

displacement term in addition to a higher order traction term. Hence, higher order boundary
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conditions need to be specified in addition to conventional traction displacement boundary con-

ditions. The nominal tractions and higher order tractions are denoted Ṫ0i and ṫ0, respectively.

For the present problem ṫ0 = 0 is imposed as the higher order boundary conditions in all cases,

on internal elastic-plastic boundaries as well as external boundaries, as was done in (Niordson

and Tvergaard 2007) for plane strain void growth and in (Niordson and Tvergaard 2006) for the

analyses of cavitation instabilities.

The constitutive equations for the Kirchhoff stress-measures are (see Niordson and Redanz,

2004)

5
ς ij = Rijkl(ε̇kl − ε̇P mkl) = ς̇ij − ω̇ikσkj − σikω̇jk (6)

q̇ = h

(

ε̇P +
1

2
Biε̇

P
,i + Cε̇P

)

(7)

∨
ρi = h(Aij ε̇

P
,j +

1

2
Biε̇

P ) = ρ̇i − ėikρk (8)

where h = h[Ep] is the hardening modulus, and ω̇ij is the anti-symmetric part of ėij . The elastic

stiffness tensor is given by

Rijkl =
E

1 + ν

(

1

2
(δikδjl + δilδjk) +

ν

1 − 2ν
δijδkl

)

(9)

where E is Young’s modulus, ν is Poisson’s ratio, and δij is Kronecker’s delta. The hardening

modulus is calculated on the basis of the tangent-modulus through

h[ET ] =

(

1

ET

−
1

E

)−1

(10)

The material surrounding the voids is assumed to be power-law hardening, using the relation

between the effective plastic strain and the tangent modulus of the uniaxial stress-strain curve:

ET =
E

n

(

EP

ε0

+ 1

)(1/n)−1

(11)

where n is the hardening exponent and ε0 = σy/E is the yield strain under uni-axial tension,

with σy denoting the initial yield stress.

3. NUMERICAL METHOD AND PROBLEM DESCRIPTION

Numerical solutions are obtained using a two-field finite element method similar to that used by

de Borst and Mühlhaus (1992), and de Borst and Pamin (1996). This method has also been used
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Figure 1: Cell model for a material with an array of voids. (a) Hexagonal distribution of voids with a cylindrical

cell indicated by the circular dashed line. (b) A part of a layer of voids. (c) Using the symmetry of the problem half

a void can be modeled in an axi-symmetric cell. The cell radius and length are denoted Rc and Lc, respectively,

and the void radius is denoted Rv.

by Niordson and Hutchinson (2003) to model the small strain theory by Fleck and Hutchinson

(2001), while Niordson and Redanz (2004) and Niordson and Tvergaard (2005, 2006, 2007)

have used the approach to solve problems at finite strains.

An axi-symmetric cell model is used to model a hexagonal arrangement of spherical voids

(Figure 1a). The voids are aligned in planes as shown in Figure 1b. Using the symmetry of the

problem the material can be analyzed numerically using the computational cell shown in Figure

1c. The void and cell radii are denoted Rv, and Rc, respectively, and the length of the cell is

denoted Lc. Hence the in-plane void spacing is 2Rc, while the out-of-plane void spacing is 2Lc.

The void volume fraction for the material can be expressed in terms of the cell and void

dimensions by

f =
2R3

v

3R2
cLc

For the results presented throughout this paper Lc/Rc = 1 is used so that the in-plane and
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out-of-plane spacings are equal. The boundary conditions applied to the cell are specified by

u̇1 = 0 and Ṫ02 = 0, for x1 = 0

u̇1 = U̇1 and Ṫ02 = 0, for x1 = Lc + U1

u̇2 = 0 and Ṫ01 = 0, for x2 = 0 (12)

u̇2 = U̇2 and Ṫ01 = 0, for x2 = Rc + U2

where U̇1 and U̇2 are determined such that a constant ratio of the average true stresses is main-

tained

σ2

σ1

= ρ (13)

Defining the triaxiality ratio, T , as the ratio of the macroscopic effective stress to the macro-

scopic hydrostatic stress gives the following relation (Koplik and Needleman, 1988)

T =
1 + 2ρ

3(1 − ρ)

In addition to the conventional boundary conditions, ṫ0 = 0 is specified along the entire

surface of the material modeled. At the surface of the cell this constitutes the appropriate

symmetry boundary condition, while at the void surface it models that there is no constraint

on plastic flow at the free surface. Also, for internal elastic-plastic boundaries a vanishing

constraint on plastic flow is imposed (ṫ0 = 0). Here, the choice is not trivial, but as argued in

PSfrag replacements
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U2

x1

x2

Rc

Lc

Rv

(a)

(b)

(c)

cL

Figure 2: A typical example of a finite element mesh used for the numerical computations.
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Niordson and Hutchinson (2003), this models a material where dislocations are free to penetrate

the current elastic-plastic boundary.

The nonlocal serendipity elements developed in Niordson and Tvergaard (2005) are used

to model the power-law hardening material behavior. Further details on the numerical imple-

mentation are found in Niordson and Hutchinson (2003), Niordson and Redanz (2004), and

Niordson and Tvergaard (2005, 2006).

Figure 2 shows a typical finite element mesh used for the numerical analyses.

4. RESULTS

The true stress as a function of the logarithmic strain is shown in Figure 3a for conventional

materials with different void volume fractions and for different loading ratios, ρ. The largest

value of ρ = 0.75 corresponds to the triaxiality ratio T ≈ 3.3, which is roughly the triaxiality in

in the vicinity of a crack tip for lightly hardening solids (Koplik and Needleman, 1988). Figure

3b shows the relative void growth as a function of strain. For Rv = 0 there are no voids so the

loading is homogeneous. For Rv/Rc = 0.05 and Rv/Rc = 0.10 the void volume fractions are

f ≈ 8.33 · 10−5 and f ≈ 6.67 · 10−4, respectively, while for the largest void size compared to

(a) (b)
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Figure 3: Conventional results (l∗ = 0) for a material without voids and for materials with three different void

volume fractions, where the void distribution is such that there is an equal in-plane and out-of-plane spacing

(Lc/Rc = 1). The analyses are carried out for three different values of the ratio of transverse stress to axial stress,

ρ. The material parameters are given by σy/E = 0.004, ν = 1/3 and n = 10. (a) Shows the overall response in

terms of the true stress as a function of logarithmic strain, and (b) shows the relative void growth as a function of

strain.
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Figure 4: Size dependent results for a material with a large void volume fraction f ≈ 5.33 · 10−3 (corresponding

to Rv/Rc = 0.2) with equal in-plane and out-of-plane spacing (Lc/Rc = 1). Both conventional and gradient

dependent results with Rv/l∗ = 1.0 and Rv/l∗ = 0.5 are shown for three different stress ratios. The conventional

material parameters are given by σy/E = 0.004, ν = 1/3 and n = 10. (a) Shows the overall response in terms of

the true stress as a function of strain, and (b) shows the relative void growth.

the size of the cell (Rv/Rc = 0.2) the void volume fraction is f ≈ 5.33 · 10−3. For the two

larger values of the stress ratio, ρ, it is seen that introducing voids in the material leads to overall

softening of the material during void growth. This is due to void growth toward coalescence

(Koplik and Needleman, 1988). For ρ = 0.75 the strain level at which the softening begins is

significantly smaller than for ρ = 0.50 (T ≈ 1.3), due to much more dramatic void growth at

low strains. At large deformation levels the finite element mesh becomes distorted. Hence, the

analyses are stopped when the relative void growth reaches 200, except for the analyses with

the initial void size of Rv/Rc = 0.20, which are stopped at ∆V/V0 = 32.

When the void size is on the micron to sub-micron scale it is expected that geometrically nec-

essary dislocations due to large strain gradients (Ashby, 1970) will lead to additional hardening

over macroscopic voids with the same void volume fraction even though the overall loading is

homogeneous. This is reported in a number of investigations for hydrostatic loading by Fleck

and Hutchinson (1997), Huang et al. (2000) and Fleck and Hutchinson (2001), and for axi-

symmetric loading conditions by Liu et al. (2003, 2005), Wen et al. (2005), Tvergaard and

Niordson (2004) and Niordson and Tvergaard (2006, 2007). Similar size effects are observed

in metal matrix composites (Lloyd, 1994) which are well captured by gradient theories of plas-

ticity (Bittencourt et al., 2003; Niordson, 2003).
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In Figure 4 results corresponding to those in Figure 3 are shown for the larger void volume

fraction (f ≈ 5.33 · 10−3) specified by Rv/Rc = 0.2 for different void sizes. Assuming a fixed

material length parameter, l∗, which is on the micron scale, the ratio Rv/l∗ specifies the void

size. It is observed that decreasing the void size leads to a significant increase in the attainable

stress levels, especially for ρ = 0.75. This is due to the suppression of void growth as a result of

gradient hardening, which moreover has the effect that the maximum value of the overall stress-

strain curve occurs at a lager strain. For ρ = 0.5 a sharp kink in the response curves is observed,

which accompanies significant void growth. This is closely related to the onset of what Koplik

and Needleman (1988) refer to as the uniaxial straining deformation mode which can be used

to define the onset of void coalescence. Figure 4 shows that the this onset of void coalescence

is significantly delayed for smaller voids, and that the strain at the onset of coalescence is

significantly increased as the voids become comparable in size to the material length parameter.

However, the variation of the maximum stress is much smaller than for ρ = 0.75. At low stress

triaxialities (ρ = 0.25 corresponding to T ≈ 0.67) the overall response is almost unaffected by

void size (specified by the ratio Rv/l∗), since void growth is rather limited. The amount of

void growth is quite limited for this low triaxiality, and relatively independent of size at small

strains. On the other hand for larger deformation levels, the void size effect increases. These
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Figure 5: Size dependent results for a material with a small void volume fraction f ≈ 8.33 · 10−5 (corresponding

to Rv/Rc = 0.05). Both conventional and gradient dependent results with Rv/l∗ = 1.0 and Rv/l∗ = 0.5 are

shown for three different stress ratios. The conventional material parameters are given by σy/E = 0.004, ν = 1/3

and n = 10. (a) Shows the overall response in terms of the true stress as a function of strain, and (b) shows the

relative void growth.
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findings are in qualitative agreement with Liu et al. (2003) who found large effects of void size

for large mean stresses, while the size effect in void growth was found to be insignificant for

small values of the mean stress, though it was found to be amplified at large remote deformation

levels.

Results for a smaller void volume fraction with Rv/Rc = 0.05 (f ≈ 8.33·10−5) are presented

in Figure 5. Also here, it is seen that gradient effects lead to delayed void growth and an

increased maximum stress when voids become smaller, as is most clearly observed for ρ = 0.50

and ρ = 0.75. For the higher stress ratio (ρ = 0.75) a significant increase in the stress level

with decreasing void size is observed. This is followed by an increasingly steep stress decay

with decreasing initial void size as the voids show dramatic growth during coalescence. For the

same strain level the amount of relative void growth can easily vary an order of magnitude or

more in materials with initial void sizes that are just a factor of two different.

For ρ = 0.75 response curves and curves of relative void growth are shown in Figure 6 for

different initial void volume fractions. The initial void volume fraction ranges from 6.67 · 10−7

(Rv/Rc = 0.01) to 5.33 · 10−3 (Rv/Rc = 0.20). The response curve for a material without

voids is also shown in Figure 6a. For the conventional material it is seen that decreasing the

void volume fraction leads to an increase in the overall strength of the material, even though

the relative growth of the voids increases significantly at any given level of overall strain. The

(a) (b)
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Figure 6: Results for initially large voids (conventional) compared to micron scale voids (Rv/l∗ = 0.5) for different

void volume fractions (specified by the value of Rv/Rc). The stress ratio is ρ = 0.75. The conventional material

parameters are given by σy/E = 0.004, ν = 1/3 and n = 10. (a) Shows the overall response in terms of the true

stress as a function of strain, and (b) shows the relative void growth.
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Figure 7: Results for the multi-parameter model compared to the single parameter model for a void volume fraction

f ≈ 8.33 · 10−5 (Rv/Rc = 0.05). For the multi-parameter model each of the length parameters are set equal to

Rv one by one keeping the others zero. The results are presented for three different stress-triaxialities. (a) Shows

the overall response in terms of the true stress as a function of strain, and (b) shows the relative void growth.

strain level at which the maximum stress level is attained increases with decreasing void volume

fraction. When the voids are on the micron scale (Rv/l∗ = 0.5), the attainable stress levels are

increased due to significant suppression of void growth at small deformation levels.

Studies of the growth of a single void under hydrostatic loading (ρ = 1) (Fleck and Hutchin-

son, 2001) shows that l2 has no influence in the multi-parameter theory (Equation (1)). Fur-

thermore, they report that l3 only has a minor influence, and that l1 is the important length

parameter for void growth under hydrostatic loading conditions. For ρ = 0.9, it was con-

firmed by Niordson and Tvergaard (2006), in their studies of cavitation instabilities, that l2 and

l3 have an insignificant influence on growth of sparsely distributed voids. However, at lower

values of the stress ratio ρ, it must be expected that both l2 and l3 influence void growth. For

Rv/Rc = 0.05 (f ≈ 8.33 · 10−5) Figure 7 shows response curves and curves of relative void

growth for different stress ratios and different length parameters. The figure shows that when

ρ = 0.75 the length parameters l2 and l3 has an insignificant influence on both the overall re-

sponse (Figure 7a) and the amount of void growth (Figure 7b). On the other hand, void growth

is delayed somewhat for ρ = 0.50, when setting the length parameters l2 and l3 equal to the

initial void radius one by one. This leads to response curves that are affected slightly toward

higher overall ductility. For ρ = 0.25 the amount of void growth is very small so even though

gradient effects (through either of the length parameters) does affect the amount of relative void
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Figure 8: For a large void volume fraction f ≈ 5.33 · 10−3 (Rv/Rc = 0.2) this figure shows results for the multi-

parameter model compared to the single parameter model for different stress-ratios. For the multi-parameter model

each of the length parameters are set equal to Rv one by one keeping the others zero. The results are presented for

three different stress-triaxialities. (a) Shows the overall response in terms of the true stress as a function of strain,

and (b) shows the relative void growth.

growth, the total void growth is so small that it has no effect on the overall response within the

deformation levels studied here.

For all the values of ρ studied in Figure 7 it is seen that the important length parameter in

relation to void growth is l1. The figure also confirms for ρ < 1, what Fleck and Hutchinson

(2001) showed for spherically symmetric void expansion, i.e. that gradient effects predicted by

the single parameter version Equation (2) are quantitatively similar to those predicted by the

multi-parameter version when l∗ is about twice the value of l1.

At larger void volume fractions the interaction between the voids changes the stress state

such that the dominant role of the length parameter l1 could be challenged by l2 and l3. How-

ever, Figure 8 shows that the influence of these two length parameters is still very limited, as

compared to that of l1. Figure 8 shows that even though l2 and l3 have almost no influence on

the amount of void growth as a function of strain for ρ = 0.5, they do have a minor influence

on the response curves. This effect is similar to the effect of these parameters on plane strain

sheet necking (see Niordson and Redanz (2004) and Niordson and Tvergaard, 2005), as l2 and

l3 tend to limit the development of the neck in the ligaments along the cell sides during coa-

lescence. For the higher stress ratio, ρ = 0.75, l2 and l3 have a moderate influence on both

response curves and the amount of relative void growth. However, also for the large voids it is
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seen that the important length parameter in the multi-parameter model is l1, and also here the

results show that a similar effect on void growth is obtained in the single-parameter model with

l∗ being twice as large as l1.

5. DISCUSSION

It is shown how a constitutive length parameter on the micron scale changes void growth quan-

titatively for micron size voids. When voids become smaller and comparable to the internal

material length parameter, void growth is significantly suppressed consistent with findings of

Fleck and Hutchinson (1997, 2001), Huang et al. (2000), and Liu et al. (2003, 2005). This has

the effect of increasing the attainable stress level and the strain at the onset of void coalescence.

At relatively large void volume fraction (f ≈ 5.33 · 10−3) Figure 4 shows that especially for

large triaxialities (T ≈ 3.3) the load carrying capacity of the material is significantly increased

for micron scale voids. For a smaller stress triaxiality of T ≈ 1.3 this capacity is still increased

for small voids but just moderately, while the ductility of the material still increases significantly

due to the delay of void coalescence.

For smaller initial void volume fractions f ≈ 8.33 · 10−5 Figure 5 shows that the initial

void size has an important effect on the overall response when the stress triaxiality is large. At

more moderate stress triaxialities the effect of void size on the overall response is much smaller

consistent with the findings of Liu et al. (2003). However, it must be expected that the ductility

of the material is much influenced, as a reduced void size, relative to the material length, still

leads to a significant suppression of void growth at large levels of deformation.

When void sizes are on the micron scale, the effect of varying the initial void volume fraction,

is studied in Figure 6 for a high stress triaxiality (ρ = 0.75). It is found that increasing the void

volume fraction for micron size voids leads to smaller peak levels in the stress, which is also

the case for large voids (conventional results). The results show that the ductility of the material

increases with increasing initial void volume fraction. However, a comparison of the results in

the Figures 4 and 5 shows that for a lower stress triaxialities (ρ = 0.5), the increase in void

volume fraction leads to decreasing ductility for both macroscopic and micron scale voids.

The present studies of the multi length parameter model by Fleck and Hutchinson (2001)

confirms earlier studies (Fleck and Hutchinson, 2001; Niordson and Tvergaard, 2006) that the

important length parameter is l1, which is associated with stretch gradients. However, for large

void volume fractions or moderate to low stress triaxialities also the length parameters l2 and
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Figure 9: For an initial void volume fraction of f0 ≈ 6.67 · 10−4, the figure shows (a) the strain and (b) the void

volume fraction at the onset of coalescence, both as a function of the stress ratio, and for different initial void sizes.

l3 have some effect in suppressing void growth and the final deformation in the ligaments in

the stage of void coalescence. Furthermore, it was confirmed for a wide spectrum of stress

triaxialities and a large span of initial void volume fractions that l1 has a similar effect on void

growth as l∗, when chosen half as large.

Defining the onset of void coalescence as the onset of the uniaxial straining mode, Figure

9(a) shows the strain at the onset of coalescence as a function of the stress ratio, ρ, for different

void sizes, when the initial void volume fraction is f0 ≈ 6.67 · 10−4. It is seen that the strain at

the onset of localization decreases with increasing stress ratio for all the void sizes considered.

Furthermore, the figure shows that the ductility increases with decreasing void size. Figure

9(b) shows the void volume fraction at the onset of void coalescence as a function of ρ. It can

be observed that the void volume fraction decreases with decreasing void size at the onset of

coalescence.

For an initial void volume fraction of f0 ≈ 5.33 · 10−3 similar results are shown in Figure

10(a) and (b). It is observed that also for this initial void volume fraction the strain at the onset

of localization decreases with increasing stress ratio for all values of the initial void size. Also

here, the ductility is observed to increase with decreasing void size. On the other hand, the void

volume fraction at the onset of coalescence in Figure 10(b) only decreases with decreasing void

size for small values of ρ, whereas it increases with decreasing void size for large triaxialities.
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Figure 10: For an initial void volume fraction of f0 ≈ 5.33 · 10−3, the figure shows (a) the strain and (b) the void

volume fraction at the onset of coalescence, both as a function of the stress ratio, and for different initial void sizes.

Consistent with the findings for conventional materials reported in Tvergaard (1990), the void

volume fraction at the onset of coalescence is observed to increase with increasing initial void

volume fraction, also for gradient dependent materials with micron scale voids. It must be

concluded that there is a significant influence of the stress ratio and initial void volume fraction

as well as void size on the critical porosity at the onset of coalescence.

In the results presented, the material hardening is specified by a power-law relation with

n = 10. Simulations with higher (n = 5) as well as lower material hardening (n = 20) have

also been carried out, and it is found that the effect of size increases with material hardening.

This is consistent with findings for cavitation instabilities (Huang et al., 2000; Niordson and

Tvergaard, 2006).

In conclusion, the present studies show that the suppression of void growth on the micron

scale leads to larger attainable stress levels when compared to predictions of conventional the-

ory, as well as a delay in the onset of localization which gives rise to a more ductile material

behavior.
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FIGURE CAPTIONS

Figure 1. Cell model for a material with an array of voids. (a) Hexagonal distribution of voids

with a cylindrical cell indicated by the circular dashed line. (b) A part of a layer of voids. (c)

Using the symmetry of the problem half a void can be modeled in an axi-symmetric cell. The

cell radius and length are denoted Rc and Lc, respectively, and the void radius is denoted Rv.

Figure 2. A typical example of a finite element mesh used for the numerical computations.

Figure 3. Conventional results (l∗ = 0) for a material without voids and for materials with

three different void volume fractions, where the void distribution is such that there is an equal

in-plane and out-of-plane spacing (Lc/Rc = 1). The analyses are carried out for three different

values of the ratio of transverse stress to axial stress, ρ. The material parameters are given by

σy/E = 0.004, ν = 1/3 and n = 10. (a) Shows the overall response in terms of the true stress

as a function of logarithmic strain, and (b) shows the relative void growth as a function of strain.

Figure 4. Size dependent results for a material with a large void volume fraction f ≈ 5.33 ·10−3

(corresponding to Rv/Rc = 0.2) with equal in-plane and out-of-plane spacing (Lc/Rc = 1).

Both conventional and gradient dependent results with Rv/l∗ = 1.0 and Rv/l∗ = 0.5 are shown

for three different stress ratios. The conventional material parameters are given by σy/E =

0.004, ν = 1/3 and n = 10. (a) Shows the overall response in terms of the true stress as a

function of strain, and (b) shows the relative void growth.

Figure 5. Size dependent results for a material with a small void volume fraction f ≈ 8.33·10−5

(corresponding to Rv/Rc = 0.05). Both conventional and gradient dependent results with

Rv/l∗ = 1.0 and Rv/l∗ = 0.5 are shown for three different stress ratios. The conventional

material parameters are given by σy/E = 0.004, ν = 1/3 and n = 10. (a) Shows the overall

response in terms of the true stress as a function of strain, and (b) shows the relative void growth.

Figure 6. Results for initially large voids (conventional) compared to micron scale voids (Rv/l∗ =

0.5) for different void volume fractions (specified by the value of Rv/Rc). The stress ratio is

ρ = 0.75. The conventional material parameters are given by σy/E = 0.004, ν = 1/3 and

n = 10. (a) Shows the overall response in terms of the true stress as a function of strain, and (b)

shows the relative void growth.

Figure 7. Results for the multi-parameter model compared to the single parameter model for a

void volume fraction f ≈ 8.33 · 10−5 (Rv/Rc = 0.05). For the multi-parameter model each of
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the length parameters are set equal to Rv one by one keeping the others zero. The results are

presented for three different stress-triaxialities. (a) Shows the overall response in terms of the

true stress as a function of strain, and (b) shows the relative void growth.

Figure 8. For a large void volume fraction f ≈ 5.33 · 10−3 (Rv/Rc = 0.2) this figure shows

results for the multi-parameter model compared to the single parameter model for different

stress-ratios. For the multi-parameter model each of the length parameters are set equal to

Rv one by one keeping the others zero. The results are presented for three different stress-

triaxialities. (a) Shows the overall response in terms of the true stress as a function of strain,

and (b) shows the relative void growth.

Figure 9. For an initial void volume fraction of f0 ≈ 6.67 · 10−4, the figure shows (a) the strain

and (b) the void volume fraction at the onset of coalescence, both as a function of the stress

ratio, and for different initial void sizes.

Figure 10. For an initial void volume fraction of f0 ≈ 5.33 ·10−3, the figure shows (a) the strain

and (b) the void volume fraction at the onset of coalescence, both as a function of the stress

ratio, and for different initial void sizes.
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