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Size scale dependence of compressive instabilities in

layered composites in the presence of stress gradients

K Poulios and C F Niordson

Department of Mechanical Engineering, Solid Mechanics, Technical University
of Denmark, Nils Koppels Allé, DK-2800 Kgs. Lyngby, Denmark

E-mail: kopo@mek.dtu.dk

Abstract. The compressive strength of unidirectionally or layer-wise reinforced composite
materials in direction parallel to their reinforcement is limited by micro-buckling instabilities.
Although the inherent compressive strength of a given material micro-structure can easily be
determined by assessing its stability under a uniform compressive load, this is often not sufficient
for predicting failure initiation within a larger structure. In cases, where the composite material
micro-structure is locally subjected to strongly non-uniform loadings, compressive instabilities
depend not only on the maximum compressive stress but also on spatial stress or strain gradients,
rendering failure initiation size scale dependent. The present work demonstrates and investigates
the aforementioned effect through numerical simulations of periodically layered structures with
notches and holes under bending and compressive loads, respectively. The presented results
emphasize the importance of the reinforcing layer thickness on the load carrying capacity of the
investigated structures, at a constant volumetric fraction of the reinforcement. The observed
strengthening at higher values of the relative layer thickness is attributed to the bending stiffness
of the reinforcing layers.

1. Introduction
The load carrying capacity of structures made of strongly anisotropic composite materials is
often determined by failure under compressive loads parallel to the reinforcement. Due to its
vast practical importance, this kind of failure has been subject of extensive research including
both experimental and numerical investigations. Two major effects related to compressive failure
of unidirectionally reinforced composites are micro-buckling and formation of kink-bands, [1].

Historically, significant research effort went into understanding the early observed
discrepancies between the predictions of the classical limit of Rosen, [2], for elastic micro-
buckling and the significantly lower experimentally determined compressive strengths. Argon
suggested a different compressive instability limit, based on an assumed local misalignment of
the reinforcement and plastic yielding of the matrix material, [3]. Later, Budiansky proposed a
combination of Rosen’s and Argon’s limits into a single expression, [4], and Budiansky and Fleck
extended this limit to the case of a matrix material with isotropic hardening of Ramberg-Osgood
type, [5].

These very fundamental investigations, determined the inherent compressive strength of a
considered composite under a spatially constant and longitudinal compressive stress. In a real
structure though, the material micro-structure is generally subjected to arbitrary stress states,
possibly including significant spatial gradients. The load carrying capacity of a structure is
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then determined as a combination of the material micro-structure properties and the macro-
structure design and loads. Waas proposed a semi-analytical model for predicting elastic micro-
buckling initiation close to a free surface and in the presence of stress gradients, [6]. Fleck
and Shu developed a numerical model based on a homogenized representation of the material
micro-structure for studying elasto-plastic micro-buckling initiation for different kinds of fiber
misalignments, [7] . Kyriakides et al. compared numerical and experimental results of kink-
band formation, based on a finite-element model with explicitly discretized micro-structure,
[8]. Following the same approach, Wind et al. determined the bending load capacity of a
longitudinally reinforced V-notched beam both experimentally and numerically, [9].

Based on numerical examples, the present work demonstrates that at the presence of stress
gradients, prediction of compressive failure initiation is not trivial and not easy to capture by
analytic models.

2. Numerical Model
This section provides a brief summary of the homogenized finite-element model, introduced in
[10], which is used for all simulations, presented in the next section. The main characteristic
of the model, is that it involves three unknown fields to solve for: the displacements field u,
the internal kinematic variable field d and the plastic multiplier field ξm. The physical meaning
of the vector variable d is illustrated in figure 1, which also defines the unit vectors T and N ,
respectively tangential and normal to the fiber direction.

Figure 1. Undeformed and arbitrary deformed configurations of the micro-structure.

A kinematic analysis of the considered micro-structure leads to average deformation gradient
tensors for the fiber and the matrix materials respectively defined as

Ff =  +∇u− 1

cf
dNT (1)

and

Fm =  +∇u+
1

cm
dNT , (2)

in terms of the unknown homogenized fields u and d
A careful averaging of the virtual work in the material micro-structure with respect to

variations of variables u and d, leads to the following expression:

δW = (cm Pm + cf Pf ) : ∇δu+ (Pm − Pf ) :
(
δd NT

)
+

h2f
12 cf

DPf (Ff )
[
∇dTT T

]
:
(
∇δdTT T

)
,

(3)
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where cf and cm = 1− cf are the volume fractions of the fiber and matrix respectively, Pf and
Pm are the corresponding 1st Piola-Kirchhoff stress tensors, DPf is the directional derivative of
the mapping Ff 7→ Pf and hf is the fiber layer height. The first term in Eq. (3) expresses the
classical force equilibrium and the second term expresses an internal equilibrium in the sense of
the Reuss model. The last term corresponds to the part of the fiber bending energy that is not
captured by the homogenized displacements field u.

The 1st Piola-Kirchhoff stress tensors contained in Eq. (3) are based on hyper-elastic and
hyper-elasto-plastic constitutive laws for the fiber and matrix materials respectively. Under
consideration of Eqs. (1) and (2), these stress tensors can be written as closed form functions
Pf (∇u,d) and Pm(∇u,d, ξm) of the unknown variables and their gradients.

Eq. (3) is the basis of a corresponding finite-element formulation, which results to a discretized
system with sufficient equations for solving for u and d. One additional equation is necessary
for solving for the plastic multiplier ξm. This is the plastic yield condition, expressed in weak
form as ∫

Ω0

r(∇u,d, ξm) δξm dX = 0 ∀ δξm , (4)

where Ω0 is the considered solid domain in the undeformed configuration and r(∇u,d, ξm) an
appropriately chosen non-smooth complementarity function, which incorporates the plastic yield
surface along with the corresponding Karush–Kuhn–Tucker conditions. A specific choice of the
complementarity function r is provided in [10]. It should also be noted that the accumulated
plastic strain in the matrix material γm at the current time instant depends on the corresponding
value in the previous time instant and the unknown multiplier ξm for the current load step.

3. Numerical Examples
This section presents numerical results corresponding to two distinct examples under plane
strain conditions. In the first example, a V-notched beam is subjected to pure bending load,
until micro-buckling initiates at the notch tip due to the developed compressive stresses. The
second example demonstrates micro-buckling initiation on the circumference of a circular void
in a unidirectionally reinforced material, subjected to far-field longitudinal compression.

3.1. Bending of a V-notched beam
The geometry of the considered V-notched beam for this numerical example is defined through
the overall beam height H = 4.64 mm and length L = 20 mm, the reduced beam height
H0 = 3.867 mm at the notch location, the notch opening angle θ = 67◦ and the notch tip radius
ρ = 0.196 mm. All simulation results refer to a unit thickness, t = 1 mm. The beam is reinforced
in its longitudinal direction with the reinforcing fiber layers exhibiting a sinusoidal misalignment
in the region close to the notch tip. The wavelength of the misalignment is p = 0.156 mm and
its amplitude a = 0.52 µm, resulting in a maximum misalignment angle of 0.6◦.

The reinforcement has an initial Young’s modulus Ef = 27600 MPa and Poisson’s ratio
νf = 0.3, while the corresponding elastic properties for the matrix material are Em = 1478.3 MPa
and νm = 0.38. The matrix material is assumed to exhibit J2-flow plastic behavior of Ramberg-
Osgood type hardening, with the initial yield limit σym = 90 MPa and parameters nm = 4 and
αm = 3/7. The fiber volume fraction is cf = 0.587.

In order to determine the bending load capacity of the considered beam numerically, a
prescribed bending angle at the beam ends is incremented by means of a numerical continuation
procedure. The continuation procedure detects the critical load where a micro-buckling material
instability initiates due to compressive stresses in the region close to the notch tip. Figure 2
shows snapshots of a 3.3 mm×1.8 mm region around the notch tip at the critical load for different
values of the fiber height hf .
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a) b)

c) d)

Figure 2. Snapshots of beam bending simulations at critical load for four different reinforcing
fiber heights: a) 2.6 µm b) 5.2 µm c) 10.4 µm d) 20.8 µm.

The results presented in figure 2 make clear that the fiber height hf has a large impact on the
bending load capacity of the considered beam. In the case of the highest value of hf = 20.8 µm,
an almost triple bending angle and moment can be sustained compared to the case with the
lowest hf = 2.6 µm. The difference is also obvious in the longitudinal stress profiles on the cross-
section through the notch, included in the snapshots. The micro-buckling modes for the four
considered values of hf are visualized through the surface velocity profile at the notch tip. The
increased bending stiffness at higher beam heights results to smoothened velocity profiles and
corresponding buckling modes. The color map in figure 2 illustrates the accumulated plastic
strain in the matrix material γm, while the gray scale map in the background illustrates the
variation of the fiber misalignment angle along the horizontal direction.

Figure 3. Snapshot of beam
bending simulation in the post-
buckling regime for reinforcing
fiber height hf = 5.2 µm.
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For the case with hf = 5.2 µm, figure 3 illustrates the deformed reinforcing fibers at
approximately the same bending angle as the critical point shown in figure 2b, but posterior
to the initiation of micro-buckling and the formation of a pair of kink-bands. The visualized
streamlines were generated accounting for the direction of the deformed fibers but they are not
supposed to capture the real density or thickness of the fiber layers.

3.2. Longitudinal compression of a specimen with a circular hole
The modeled geometry in the second numerical example corresponds to a circular disc of outer
radius R = 20 mm with a concentric circular hole of radius r = 1 mm. The reinforcing material
elasticity parameters are Ef = 2.6·105 MPa and Gf = 105 MPa and the relevant matrix material
parameters are Em = 2.6 · 103 MPa, Gf = 103 MPa, σym = 90 MPa, nm = 4 and αm = 3/7.
As in the previous example, all presented results refer to a unit thickness t = 1 mm and plane
strain conditions.

Far-field uniaxial compression is applied at the outer boundary with respect to the horizontal
displacements, while two different load cases are considered regarding the vertical displacements,
which are either constrained to zero or left free. The two cases are respectively referred to as
transversely constrained (ε22 = 0) and transversely free (σ22 = 0).

The reinforcement is parallel to the horizontal direction and imperfection-free. Investigations
with an imposed sinusoidal waviness imperfection of the reinforcement have shown that the
effect of such imperfections is rather low, compared to the effect of the circular void itself and
they are omitted here for the sake of simplicity.

Due to the available symmetries in the geometry, the reinforcement and the boundary
conditions, it is sufficient to model only one quarter of the disc. Additional boundary conditions
are necessary along the horizontal and vertical symmetry axes. The vertical and horizontal
components of u are respectively fixed to zero along the two aforementioned axes and the
horizontal component of d is fixed to zero on both symmetry axes.

As the far-field longitudinal strain ε11 is incremented within a numerical continuation scheme,
a limit point is reached, where micro-buckling initiates near the top of the void circumference.
Figure 4 shows snapshots corresponding to this limit point for two different values of the fiber
height. Moreover the figure includes results both for the transversely constrained case, left from
the vertical symmetry axis as well as for the transversely free case, right from the symmetry axis.
The solid black line corresponds to the undeformed circumference, while the velocity profile on
the void circumference is visualized by means of the red vectors.

(a) (b)

Figure 4. Snapshots at initiation of micro-buckling close to the circumference of a void in a
longitudinal compressed reinforced composite for two different fiber heights: a) hf = 5 µm and
b) hf = 60 µm.
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For the highest value of hf , micro-buckling initiates at a higher far-field strain, which is
reflected in the considerably larger deformations observed in figure 4b. The critical far-field
strain for the lowest value of hf is approximately 0.44%, independent of the condition in the
transverse direction. On the contrary, for the highest value of hf , different critical strains are
attained for the transversely constrained and transversely free cases, respectively equal to 0.94%
and 0.84%.

Figure 5. Snapshot in the post-buckling regime for reinforcing fiber height hf = 5 µm.

Figure 6. Snapshot in the post-buckling regime for reinforcing fiber height hf = 60 µm.

Figures 5 and 6 show the post-buckling deformed solids in the region near the considered void,
for the two different values of the fiber layer height, both for the transversely constrained and
the transversely free cases. For the lowest fiber height value, the snapshots presented in figure 5
correspond to approximately the same far-field longitudinal strain as at the buckling initiation
point shown in figure 4a, i.e. ε11 = −0.0044, but after the formation of the kink-bands that
are visible in the region above the void. The differences between the two cases with respect to
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the boundary condition in the transverse direction are minimal. Figure 6 shows corresponding
snapshots in the post-buckling regime with regard to the highest fiber height value. It should
be noted that the transversely free case shown in figure 6 is at a significantly lower far-field
strain, ε11 = −0.0084, than the transversely constrained one, ε11 = −0.0094. Despite the lower
applied strain, the observed deformations are similar, demonstrating the significant impact of
the boundary condition in the transverse direction, for this example. Compared to figure 5, the
formed kink-bands shown in figure 6 exhibit a significantly smoother transition, attributed to
the higher bending stiffness of the fibers in this case.

4. Conclusions
The two numerical examples included in this work, demonstrate the crucial role of the fiber
bending stiffness in predicting micro-buckling initiation in unidirectionally reinforced composite
materials. At locations close to notches or holes, where significant stress gradients are present,
compressive material instabilities were observed to initiate at very distinct levels of the maximum
longitudinal compressive stress, depending on the assumed reinforcing fiber height. The
numerical results show that the interplay between micro-structural effects and the overall
geometry of the structure introduces a size scale effect which is not possible to capture by
analytical models, unless a length scale parameter such as the reinforcing fiber layer height is
considered.
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