76 research outputs found

    Mesoderm Formation in Eleutherodactylus coqui: Body Patterning in a Frog with a Large Egg

    Get PDF
    AbstractThe direct developing frog, Eleutherodactylus coqui, develops from a large egg (diameter 3.5 mm). To investigate the effect of egg size on germ-layer formation, we studied mesoderm formation in E. coqui and compared it to that of Xenopus laevis (diameter 1.3 mm). First, we identified the position of prospective mesoderm in the 16-cell E. coqui embryo by cell-lineage tracing. Although the animal blastomeres are small, they form most of the blastocoel roof and make extensive contributions to some mesodermal tissues. Second, we performed recombinant analysis with X. laevis animal caps to define the distribution of mesoderm-inducing activity. Mesoderm-inducing activity in E. coqui was restricted around the marginal zone with strong activity in the superficial cells. Neither the vegetal pole nor the blastocoel floor had activity, although these same regions from X. laevis induced mesoderm. Third, we cloned Ecbra, a homologue of Xbra, an early mesoderm marker in X. laevis. Ecbra was expressed in the marginal ring close to the surface, similar to X. laevis, but E. coqui had weaker expression on the dorsal side. Our results suggest that mesoderm formation is shifted more animally and superficially in E. coqui compared to X. laevis

    Detection of epidermal growth factor receptor mutations in exhaled breath condensate using droplet digital polymerase chain reaction

    Get PDF
    The detection of certain oncogenic driver mutations, including those of epidermal growth factor receptor (EGFR), is essential for determining treatment strategies for advanced non‑small cell lung cancer (NSCLC). The current study assessed the feasibility of testing exhaled breath condensate (EBC) for EGFR mutations by droplet digital PCR (ddPCR). Samples were collected from 12 patients with NSCLC harboring EGFR mutations that were admitted to Okayama University Hospital between June 1, 2014 and December 31, 2017. A total of 21 EBC samples were collected using the RTube™ method and EGFR mutations (L858R, exon 19 deletions or T790M) were assessed through ddPCR analysis (EBC‑ddPCR). A total of 3 healthy volunteer samples were also tested to determine a threshold value for each mutation. Various patient characteristics were determined, including sex (3 males and 9 females), age (range 54‑81 years; median, 66 years), smoking history (10 had never smoked; 2 were former smokers), histology (12 patients exhibited adenocarcinoma), clinical stage (9 patients were stage IV; 3 exhibited post‑operative recurrence) and EGFR mutation type (4 had L858R; 8 had exon 19 deletions; 8 had T790M). EBC‑ddPCR demonstrated positive droplets in 8 of the 12 patients. The sensitivity and specificity of each mutation was as follows: 27.3 and 80.0% for EGFR L858R, 30.0 and 90.9% for EGFR Ex19del, and 22.2 and 100% for EGFR T790M. EBC‑ddPCR analysis of EGFR mutations exhibited modest sensitivity and acceptable specificity. EBC‑ddPCR is a minimally invasive and replicable procedure and may be a complementary method for EGFR testing in patients where blood or tissue sampling proves difficult

    Identification of targetable kinases in idiopathic pulmonary fibrosis

    Get PDF
    Background Tyrosine kinase activation plays an important role in the progression of pulmonary fibrosis. In this study, we analyzed the expression of 612 kinase-coding and cancer-related genes using next-generation sequencing to identify potential therapeutic targets for idiopathic pulmonary fibrosis (IPF). Methods Thirteen samples from five patients with IPF (Cases 1-5) and eight samples from four patients without IPF (control) were included in this study. Six of the thirteen samples were obtained from different lung segments of a single patient who underwent bilateral pneumonectomy. Gene expression analysis of IPF lung tissue samples (n = 13) and control samples (n = 8) was performed using SureSelect RNA Human Kinome Kit. The expression of the selected genes was further confirmed at the protein level by immunohistochemistry (IHC). Results Gene expression analysis revealed a correlation between the gene expression signatures and the degree of fibrosis, as assessed by Ashcroft score. In addition, the expression analysis indicated a stronger heterogeneity among the IPF lung samples than among the control lung samples. In the integrated analysis of the 21 samples, DCLK1 and STK33 were found to be upregulated in IPF lung samples compared to control lung samples. However, the top most upregulated genes were distinct in individual cases. DCLK1, PDK4, and ERBB4 were upregulated in IPF case 1, whereas STK33, PIM2, and SYK were upregulated in IPF case 2. IHC revealed that these proteins were expressed in the epithelial layer of the fibrotic lesions. Conclusions We performed a comprehensive kinase expression analysis to explore the potential therapeutic targets for IPF. We found that DCLK1 and STK33 may serve as potential candidate targets for molecular targeted therapy of IPF. In addition, PDK4, ERBB4, PIM2, and SYK might also serve as personalized therapeutic targets of IPF. Additional large-scale studies are warranted to develop personalized therapies for patients with IPF

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Multisynaptic inputs from the medial temporal lobe to V4 in macaques.

    Get PDF
    Retrograde transsynaptic transport of rabies virus was employed to undertake the top-down projections from the medial temporal lobe (MTL) to visual area V4 of the occipitotemporal visual pathway in Japanese monkeys (Macaca fuscata). On day 3 after rabies injections into V4, neuronal labeling was observed prominently in the temporal lobe areas that have direct connections with V4, including area TF of the parahippocampal cortex. Furthermore, conspicuous neuron labeling appeared disynaptically in area TH of the parahippocampal cortex, and areas 35 and 36 of the perirhinal cortex. The labeled neurons were located predominantly in deep layers. On day 4 after the rabies injections, labeled neurons were found in the hippocampal formation, along with massive labeling in the parahippocampal and perirhinal cortices. In the hippocampal formation, the densest neuron labeling was seen in layer 5 of the entorhinal cortex, and a small but certain number of neurons were labeled in other regions, such as the subicular complex and CA1 and CA3 of the hippocampus proper. The present results indicate that V4 receives major input from the hippocampus proper via the entorhinal cortex, as well as "short-cut" pathways that bypass the entorhinal cortex. These multisynaptic pathways may define an anatomical basis for hippocampal-cortical interactions involving lower visual areas. The multisynaptic input from the MTL to V4 is likely to provide mnemonic information about object recognition that is accomplished through the occipitotemporal pathway

    Histograms showing the differences in retrograde labeling distributions in the inferotemporal cortex (area TE) and the MTL.

    No full text
    <p>A, Case of WGA-HRP injections into V4. B, Case of rabies injections into V4 at the 3-day postinjection period. C, Case of rabies injections into V4 at the 4-day postinjection period. Cell counts were performed in every 12th section (60 µm thick; 720 µm apart). Data from the WGA-HRP injection case were obtained in monkey V4, while those taken at the 3- or 4-day postinjection period represent the average of the labeled neuron numbers in monkeys V4-3a and V4-3b or monkeys V4-4a and V4-4b, respectively. Asterisks indicate the areas in which cell counts could not be done, as a tremendous number of rabies-labeled neurons appeared diffusely. The subicular complex (SC) consists of the subiculum, presubiculum, and parasubiculum. Each of these regions contained are 34, 15, and 12, respectively). HCF, hippocampal formation; IT, inferotemporal cortex; PHC, parahippocampal cortex; PRC, perirhinal cortex; TG, area TG. Other abbreviations are as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0052115#pone-0052115-g001" target="_blank">Figures 1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0052115#pone-0052115-g002" target="_blank">2</a>.</p

    Distribution of retrograde labeling in the MTL 3 days after rabies injections into V4.

    No full text
    <p>Six representative coronal sections through the MTL in monkey V4-3a are arranged anteroposteriorly (A–F). The approximate anteroposterior levels of the sections are indicated in the lateral view of the brain (inset). The gray region represents the approximate whole extent of multiple injection sites in monkey V4-3a. Each green dot in the sections (A–F) corresponds to one labeled neuron. Dotted lines denote the borders of layer 4 in each area. amt, anterior middle temporal sulcus; Ent, entorhinal cortex; FST, fundus of the superior temporal sulcus area; ot, occipitotemporal sulcus; pmt, posterior middle temporal sulcus; rh, rhinal sulcus; st, superior temporal sulcus; TEa, anterior portion of area TE; TEm, medial portion of area TE; TEO, area TEO; TEp, posterior portion of area TE; TF, area TF; TH, area TH; 35, area 35; 36, area36.</p

    Summary diagram showing possible multisynaptic pathways from the MTL to V4.

    No full text
    <p>Our results indicate that the entorhinal cortex (Ent) provides trisynaptic input to V4 via either the parahippocampal cortex (PHC) or the inferotemporal cortex (IT), while the hippocampus (HC) does through “short-cut” pathways that bypass the Ent, as denoted by orange arrows. The gray area represents the approximate location whole extent of the rabies injection sites in 4 monkeys used for the present study. For clarity, only presumably major pathways are shown here (see Discussion for details). HC, hippocampus; 1st, first-order neurons; 2nd, second-order neurons; 3rd, third-order neurons.</p
    corecore