12 research outputs found

    Adaptation to plant communities across the genome of Arabidopsis thaliana

    Get PDF
    Associate Editor: Stephen WrightInternational audienceDespite the importance of plant-plant interactions on plant community dynamics and crop yield, our understanding of the adaptive genetics underlying these interactions is still limited and deserves to be investigated in the context of complex and diffuse interactions occurring in plant assemblages. Here, based on 145 natural populations of Arabidopsis thaliana located in south-west of France and characterized for plant communities, we conducted a Genome-Environment Association analysis to finely map adaptive genomic regions of A. thaliana associated with plant community descriptors. To control for correlated abiotic environment effects, we also characterized the populations for a set of biologically meaningful climate and soil variables. A nonnegligible fraction of top single nucleotide polymorphisms was associated with both plant community descriptors and abiotic variables, highlighting the importance of considering the actual abiotic drivers of plant communities to disentangle genetic variants for biotic adaptation from genetic variants for abiotic adaptation. The adaptive loci associated with species abundance were highly dependent on the identity of the neighboring species suggesting a high degree of biotic specialization of A. thaliana to members of its plant interaction network. Moreover, the identification of adaptive loci associated with a-diversity and composition of plant communities supports the ability of A. thaliana to interact simultaneously with multiple plant neighbors, which in turn can help to understand the role of community-wide selection. Altogether, our study highlights that dissecting the genetic basis underlying plant-plant interactions at a regional scale while controlling for abiotic confounding factors can help understanding the adaptive mechanisms modulating natural plant assemblages

    Uncertainties in the projection of species distributions related to general circulation models

    Get PDF
    International audienceEcological Niche Models (ENMs) are increasingly used by ecologists to project species potential future distribution. However, the application of such models may be challenging, and some caveats have already been identified. While studies have generally shown that projections may be sensitive to the ENM applied or the emission scenario, to name just a few, the sensitivity of ENM-based scenarios to General Circulation Models (GCMs) has been often underappreciated. Here, using a multi-GCM and multi-emission scenario approach, we evaluated the variability in projected distributions under future climate conditions. We modeled the ecological realized niche (sensu Hutchinson) and predicted the baseline distribution of species with contrasting spatial patterns and representative of two major functional groups of European trees: the dwarf birch and the sweet chestnut. Their future distributions were then projected onto future climatic conditions derived from seven GCMs and four emissions scenarios using the new Representative Concentration Pathways (RCPs) developed for the Intergovernmental Panel on Climate Change (IPCC) AR5 report. Uncertainties arising from GCMs and those resulting from emissions scenarios were quantified and compared. Our study reveals that scenarios of future species distribution exhibit broad differences, depending not only on emissions scenarios but also on GCMs. We found that the between-GCM variability was greater than the between-RCP variability for the next decades and both types of variability reached a similar level at the end of this century. Our result highlights that a combined multi-GCM and multi-RCP approach is needed to better consider potential trajectories and uncertainties in future species distributions. In all cases, between-GCM variability increases with the level of warming, and if nothing is done to alleviate global warming, future species spatial distribution may become more and more difficult to anticipate. When future species spatial distributions are examined, we propose to use a large number of GCMs and RCPs to better anticipate potential trajectories and quantify uncertainties

    Climate change and the ash dieback crisis

    No full text
    International audienceBeyond the direct influence of climate change on species distribution and phenology, indirect effects may also arise from perturbations in species interactions. Infectious diseases are strong biotic forces that can precipitate population declines and lead to biodiversity loss. It has been shown in forest ecosystems worldwide that at least 10% of trees are vulnerable to extinction and pathogens are increasingly implicated. In Europe, the emerging ash dieback disease caused by the fungus Hymenoscyphus fraxineus, commonly called Chalara fraxinea, is causing a severe mortality of common ash trees (Fraxinus excelsior); this is raising concerns for the persistence of this widespread tree, which is both a key component of forest ecosystems and economically important for timber production. Here, we show how the pathogen and climate change may interact to affect the future spatial distribution of the common ash. Using two presence-only models, seven General Circulation Models and four emission scenarios, we show that climate change, by affecting the host and the pathogen separately, may uncouple their spatial distribution to create a mismatch in species interaction and so a lowering of disease transmission. Consequently, as climate change expands the ranges of both species polewards it may alleviate the ash dieback crisis in southern and occidental regions at the same time

    Data from: Investigation of the geographic scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana

    No full text
    Despite the increasing number of genomic tools, identifying the genetics underlying adaptive complex traits remains challenging in the model species Arabidopsis thaliana. This is due, at least in part, to the lack of data on the geographical scale of adaptive phenotypic variation. The aims of this study were (i) to tease apart the historical roles of adaptive and nonselective processes in shaping phenological variation in A. thaliana in France and (ii) to gain insights into the spatial scale of adaptive variation by identifying the putative selective agents responsible for this selection. Forty-nine natural stands from four climatically contrasted French regions were characterized (i) phenologically for six traits, (ii) genetically using 135 SNP markers and (iii) ecologically for 42 variables. Up to 63% of phenological variation could be explained by neutral genetic diversity. The remaining phenological variation displayed stronger associations with ecological variation within regions than among regions, suggesting the importance of local selective agents in shaping adaptive phenological variation. Although climatic conditions have often been suggested as the main selective agents acting on phenology in A. thaliana, both edaphic conditions and interspecific competition appear to be strong selective agents in some regions. In a first attempt to identify the genetics of phenological variation at different geographical scales, we phenotyped worldwide accessions and local polymorphic populations from the French RegMap in a genome-wide association (GWA) mapping study. The genomic regions associated with phenological variation depended upon the geographical scale considered, stressing the need to account for the scale of adaptive phenotypic variation when choosing accession panels for GWAS

    genotypes of the french families

    No full text
    Genotypes for the french families used in this study. The column "sample" corresponds to families from the french populations. "." stands for missing data. Heterozygotes are coded as follow: W for AT, M for AC, R for AG, Y for TC, K for TG and S for CG

    Ecological_variables

    No full text
    Ecological data measured for each A. thaliana stands sampled for this study. Refer to material and method section for acquisition methods and Figure S2 for variable description

    phenology

    No full text
    Phenological data measured in the greenhouse experiment. Number: Line number. Block: Experimental block. Treatment: Simulated Fall and Spring treatments. Tray: Number of the 66-well trays in which plant grew. Line and Column: Coordinates of the plants in the 66-well trays the plants were grown in. Type: French_stand: 49 natural stands of this study, accessions; worldwide and French accessions. Region: Four regions of France where stands have been sampled. Stand: Name of stands. For accessions, numbers correspond to the accession_ID used for GWA mapping (see Table S1.B). Name: Individual family or accession name. BT: Bolting time. FT: Flowering time. INT: Interval between bolting and flowering. FP: Flowering period. RP: Reproductive Period. FRR: Ration between flowering and reproductive reproductive period
    corecore