27 research outputs found

    Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth

    Get PDF
    Biodiversity and ecosystem service losses driven by land-use change are expected to intensify as a growing and more affluent global population requires more agricultural and forestry products, and teleconnections in the global economy lead to increasing remote environmental responsibility. By combining global biophysical and economic models, we show that, between the years 2000 and 2011, overall population and economic growth resulted in increasing total impacts on bird diversity and carbon sequestration globally, despite a reduction of land-use impacts per unit of gross domestic product (GDP). The exceptions were North America and Western Europe, where there was a reduction of forestry and agriculture impacts on nature accentuated by the 2007-2008 financial crisis. Biodiversity losses occurred predominantly in Central and Southern America, Africa and Asia with international trade an important and growing driver. In 2011, 33% of Central and Southern America and 26% of Africa's biodiversity impacts were driven by consumption in other world regions. Overall, cattle farming is the major driver of biodiversity loss, but oil seed production showed the largest increases in biodiversity impacts. Forestry activities exerted the highest impact on carbon sequestration, and also showed the largest increase in the 2000-2011 period. Our results suggest that to address the biodiversity crisis, governments should take an equitable approach recognizing remote responsibility, and promote a shift of economic development towards activities with low biodiversity impacts

    Single HA2 Mutation Increases the Infectivity and Immunogenicity of a Live Attenuated H5N1 Intranasal Influenza Vaccine Candidate Lacking NS1

    Get PDF
    Our finding suggests that an efficient intranasal vaccination with a live attenuated H5N1 virus may require a certain level of pH and temperature stability of HA in order to achieve an optimal virus uptake by the nasal epithelial cells and induce a sufficient immune response. The pH of the activation of the H5 HA protein may play a substantial role in the infectivity of HPAIVs for mammals

    Biodiversity post-2020: Closing the gap between global targets and national-level implementation

    Get PDF
    National and local governments need to step up efforts to effectively implement the post-2020 global biodiversity framework of the Convention on Biological Diversity to halt and reverse worsening biodiversity trends. Drawing on recent advances in interdisciplinary biodiversity science, we propose a framework for improved implementation by national and subnational governments. First, the identification of actions and the promotion of ownership across stakeholders need to recognize the multiple values of biodiversity and account for remote responsibility. Second, cross-sectorial implementation and mainstreaming should adopt scalable and multifunctional ecosystem restoration approaches and target positive futures for nature and people. Third, assessment of progress and adaptive management can be informed by novel biodiversity monitoring and modeling approaches handling the multidimensionality of biodiversity change

    Non-Coding RNAs in Stem Cell Regulation and Cardiac Regeneration: Current Problems and Future Perspectives

    No full text
    Although advances in rapid revascularization strategies following acute myocardial infarction (AMI) have led to improved short and long-term outcomes, the associated loss of cardiomyocytes and the subsequent remodeling result in an impaired ventricular function that can lead to heart failure or death. The poor regenerative capacity of the myocardium and the current lack of effective regenerative therapies have driven stem cell research in search of a possible solution. One approach involves the delivery of stem cells to the site of injury in order to stimulate repair response. Although animal studies initially delivered promising results, the application of similar techniques in humans has been hampered by poor target site retention and oncogenic considerations. In response, several alternative strategies, including the use of non-coding RNAs (ncRNAs), have been introduced with the aim of activating and regulating stem cells or inducing stem cell status in resident cells. Circular RNAs (circRNAs) and microRNAs (miRNAs) are ncRNAs with pivotal functions in cell proliferation and differentiation, whose role in stem cell regulation and potential significance for the field of cardiac regeneration is the primary focus of this review. We also address the general advantages of ncRNAs as promising drivers of cardiac regeneration and potent stem cell regulators

    Alternative Splicing in Cardiovascular Disease—A Survey of Recent Findings

    No full text
    Alternative splicing, a driver of posttranscriptional variance, differs from canonical splicing by arranging the introns and exons of an immature pre-mRNA transcript in a multitude of different ways. Although alternative splicing was discovered almost half a century ago, estimates of the proportion of genes that undergo alternative splicing have risen drastically over the last two decades. Deep sequencing methods and novel bioinformatic algorithms have led to new insights into the prevalence of spliced variants, tissue-specific splicing patterns and the significance of alternative splicing in development and disease. Thus far, the role of alternative splicing has been uncovered in areas ranging from heart development, the response to myocardial infarction to cardiac structural disease. Circular RNAs, a product of alternative back-splicing, were initially discovered in 1976, but landmark publications have only recently identified their regulatory role, tissue-specific expression, and transcriptomic abundance, spurring a renewed interest in the topic. The aim of this review is to provide a brief insight into some of the available findings on the role of alternative splicing in cardiovascular disease, with a focus on atherosclerosis, myocardial infarction, heart failure, dilated cardiomyopathy and circular RNAs in myocardial infarction
    corecore