11,575 research outputs found

    Quantum-dot thermometry

    Full text link
    We present a method for the measurement of a temperature differential across a single quantum dot that has transmission resonances that are separated in energy by much more than the thermal energy. We determine numerically that the method is accurate to within a few percent across a wide range of parameters. The proposed method measures the temperature of the electrons that enter the quantum dot and will be useful in experiments that aim to test theory which predicts quantum dots are highly-efficient thermoelectrics.Comment: 3 pages, 4 Figure

    Electronic structure of GaAs1-xNx alloy by soft-X-ray absorption and emission: Origin of the reduced optical efficiency

    Full text link
    The local electronic structure of N atoms in a diluted GaAs1-xNx (x=3%) alloy, in view of applications in optoelectronics, is determined for the first time using soft-X-ray absorption (SXA) and emission (SXE). Deviations from crystalline GaN, in particular in the conduction band, are dramatic. Employing the orbital character and elemental specificity of the SXE/SXA spectroscopies, we identify a charge transfer from the N atoms at the valence band maximum, reducing the overlap with the wavefunction in conduction band minimum, as the main factor limiting the optical efficiency of GaAs1-xNx alloys. Moreover, a k-conserving process of resonant inelastic x-ray scattering involving the L1 derived valence and conduction states is discovered.Comment: 3 pages, physica status solidi (Rapid Research Notes), in pres

    Journal Staff

    Get PDF
    Primary Immunodeficiencies (PID) are genetically inherited disorders characterized by defects of the immune system, leading to increased susceptibility to infection. Due to the variety of clinical symptoms and the complexity of current diagnostic procedures, accurate diagnosis of PID is often difficult in daily clinical practice. Thanks to the advent of "next generation'' sequencing technologies and target enrichment methods, the development of multiplex diagnostic assays is now possible. In this study, we applied a selector-based target enrichment assay to detect disease-causing mutations in 179 known PID genes. The usefulness of this assay for molecular diagnosis of PID was investigated by sequencing DNA from 33 patients, 18 of which had at least one known causal mutation at the onset of the experiment. We were able to identify the disease causing mutations in 60% of the investigated patients, indicating that the majority of PID cases could be resolved using a targeted sequencing approach. Causal mutations identified in the unknown patient samples were located in STAT3, IGLL1, RNF168 and PGM3. Based on our results, we propose a stepwise approach for PID diagnostics, involving targeted resequencing, followed by whole transcriptome and/or whole genome sequencing if causative variants are not found in the targeted exons

    Quantum memory for non-stationary light fields based on controlled reversible inhomogeneous broadening

    Get PDF
    We propose a new method for efficient storage and recall of non-stationary light fields, e.g. single photon time-bin qubits, in optically dense atomic ensembles. Our approach to quantum memory is based on controlled, reversible, inhomogeneous broadening. We briefly discuss experimental realizations of our proposal.Comment: 4 page

    Towards an eficient atomic frequency comb quantum memory

    Full text link
    We present an efficient photon-echo experiment based on atomic frequency combs [Phys. Rev. A 79, 052329 (2009)]. Echoes containing an energy of up to 35% of that of the input pulse are observed in a Pr3+-doped Y2SiO5 crystal. This material allows for the precise spectral holeburning needed to make a sharp and highly absorbing comb structure. We compare our results with a simple theoretical model with satisfactory agreement. Our results show that atomic frequency combs has the potential for high-efficiency storage of single photons as required in future long-distance communication based on quantum repeaters.Comment: 10 pages, 5 figure

    Behavioural compensation by drivers of a simulator when using a vision enhancement system

    Get PDF
    Technological progress is suggesting dramatic changes to the tasks of the driver, with the general aim of making driving environment safer. Before any of these technologies are implemented, empirical research is required to establish if these devices do, in fact, bring about the anticipated improvements. Initially, at least, simulated driving environments offer a means of conducting this research. The study reported here concentrates on the application of a vision enhancement (VE) system within the risk homeostasis paradigm. It was anticipated, in line with risk homeostasis theory, that drivers would compensate for the reduction in risk by increasing speed. The results support the hypothesis although, after a simulated failure of the VE system, drivers did reduce their speed due to reduced confidence in the reliability of the system

    Filtered Reaction Rate Modelling in Moderate and High Karlovitz Number Flames: an a Priori Analysis

    Get PDF
    Abstract: Direct numerical simulations (DNS) of statistically planar flames at moderate and high Karlovitz number (Ka) have been used to perform an a priori evaluation of a presumed-PDF model approach for filtered reaction rate in the framework of large eddy simulation (LES) for different LES filter sizes. The model is statistical and uses a presumed shape, based here on a beta-distribution, for the sub-grid probability density function (PDF) of a reaction progress variable. Flamelet tabulation is used for the unfiltered reaction rate. It is known that presumed PDF with flamelet tabulation may lead to over-prediction of the modelled reaction rate. This is assessed in a methodical way using DNS of varying complexity, including single-step chemistry and complex methane/air chemistry at equivalence ratio 0.6. It is shown that the error is strongly related to the filter size. A correction function is proposed in this work which can reduce the error on the reaction rate modelling at low turbulence intensities by up to 50%, and which is obtained by imposing that the consumption speed based on the modelled reaction rate matches the exact one in the flamelet limit. A second analysis is also conducted to assess the accuracy of the flamelet assumption itself. This analysis is conducted for a wide range of Ka, from 6 to 4100. It is found that at high Ka this assumption is weaker as expected, however results improve with larger filter sizes due to the reduction of the scatter produced by the fluctuations of the exact reaction rate

    The state space and physical interpretation of self-similar spherically symmetric perfect-fluid models

    Full text link
    The purpose of this paper is to further investigate the solution space of self-similar spherically symmetric perfect-fluid models and gain deeper understanding of the physical aspects of these solutions. We achieve this by combining the state space description of the homothetic approach with the use of the physically interesting quantities arising in the comoving approach. We focus on three types of models. First, we consider models that are natural inhomogeneous generalizations of the Friedmann Universe; such models are asymptotically Friedmann in their past and evolve fluctuations in the energy density at later times. Second, we consider so-called quasi-static models. This class includes models that undergo self-similar gravitational collapse and is important for studying the formation of naked singularities. If naked singularities do form, they have profound implications for the predictability of general relativity as a theory. Third, we consider a new class of asymptotically Minkowski self-similar spacetimes, emphasizing that some of them are associated with the self-similar solutions associated with the critical behaviour observed in recent gravitational collapse calculations.Comment: 24 pages, 12 figure

    Free Differential Algebras and Pure Spinor Action in IIB Superstring Sigma Models

    Full text link
    In this paper we extend to the case of IIB superstring sigma models the method proposed in hep-th/10023500 to derive the pure spinor approach for type IIA sigma models. In particular, starting from the (Free) Differential Algebra and superspace parametrization of type IIB supergravity, extended to include the BRST differential and all the ghosts, we derive the BRST transformations of fields and ghosts as well as the standard pure spinor constraints for the ghosts λ\lambda related to supersymmetry. Moreover, using the method first proposed by us, we derive the pure spinor action for type IIB superstrings in curved supergravity backgrounds (on shell), in full agreement with the action first obtained by Berkovits and Howe.Comment: 24 page
    • …
    corecore