41 research outputs found

    THE EVOLUTION OF CLIMATE AND LANDSCAPES OF THE LOWER VOLGA REGION DURING THE HOLOCENE

    Get PDF
    The results of the palynological analysis and 14C dating of the most complete sequences of the Holocene sediments were used for a detailed reconstruction of multi-cyclic alternations of climate phases and zonal and intrazonal plant formations that were taking place the Lower Volga region during the last ten thousand years. Twenty-six phases in evolution of the natural environment during the Holocene were distinguished. Landscape-climatic characteristics and chronological boundaries were identified for these phases. Reconstructed paleoclimatic stages were correlated to the Holocene transgressions and regressions in the Caspian Sea region. The model developed for periodization of climatic events may serve as a climato-stratigraphical framework for future paleogeographical studies of the Holocene in the Northern Caspian region

    THE ENVIRONMENTAL ATLAS—AN IMPORTANT STAGE IN ARCTIC RESEARCH

    Get PDF
    In the present and future development of the Arctic region, much attention is and will be given to environmental problems. Along with social and economic, these issues are the most essential components of a model of sustainable development of the region. Cartographic studies implemented in the atlas format (either printed or electronic) provide the most comprehensive, adequate, and complete representation of the Arctic environment. Such Atlas will serve as a basis for creation of the Atlas Information System “Environment of the Arctic.” The material presented herein describes the purpose of the Atlas and its scientific-methodological principles. The Atlas includes 7 parts (thematic blocks) and over 18 sub-blocks that characterize natural and anthropogenic factors of formation of the natural environment, the state of the natural environment, population ecology, and efforts of Russian and international organizations aimed at optimization of the regional environment. The material also presents methodological features of the Atlas and its role in the study and management of Arctic territories

    Climate change impacts on streamflow, sediment load and carbon fluxes in the Lena River delta

    Get PDF
    Water and sediment supply are essential to the health of deltaic ecosystems. Diverse datasets were integrated to better understand how climate change is shifting the supply of water and sediment to the largest polar distributary channel pattern – the Lena River Delta. Here the increase in warming rate from an average air temperature is from 4.1 °C for the period 1950–99 to 6.1 °C during 2000–21, which is higher than in the adjacent polar regions. Streamflow and sediment yield entering the Lena Delta have increased since 1988 by 56.3 km3 and 6.1×106 t, respectively; meanwhile, the Lena River’s increases in water temperature in June, July–August and September were found to be as much as 1.1, 0.6 and 0.05 °C. These changes have a pronounced effect on sediment regimes in particular parts of the delta. Based on analyses of correlations between various hydroclimatic drivers and sediment concentration changes across particular distributaries of the Lena Delta extracted from Landsat datasets, bank degradation driven by thermal erosional processes (which are in turn related to air and soil temperature increases) is proved to be the primary factor of the sediment regime in the delta. The study also highlights that sediment load changes are sensitive to wind speed due to remobilization of bottom sediment. Sums of daily air temperature and wind speed over 3 days are correlated with sediment concentration changes in the delta. The results also indicate that carbon transport across the delta (both POC and DOC) depends on sediment transport conditions and water discharge and might increase by up to 10 %. We conclude that the Lena Delta can be recognized as the global hot spot in terms of the hydrological consequences of climate change, which is altering sediment regimes, stream hydromorphology and carbon transport

    Pan-Eurasian Experiment (PEEX) Program : An Overview of the First 5 Years in Operation and Future Prospects

    Get PDF
    The Pan-Eurasian Experiment (PEEX) program was initiated as a bottom-up approach by the researchers coming from Finland and Russia in October 2012. The PEEX China kick off meeting was held in November 2013. During its five years in operation, the program has established a governance structure and delivered a science plan for the Northern Eurasian region. PEEX has also introduced a concept design for a modelling platform and ground-based in situ observation systems for detecting land-atmosphere and ocean-atmosphere interactions. Today, PEEX has an extensive researcher’s network representing research communities coming from the Nordic countries, Russia and China. PEEX is currently carrying out its research activities on a project basis, but is looking for more coordinated funding bases, especially in Russia and in China. The near-future challenge in implementing the PEEX research agenda is to achieve a successful integration and identification of the methodological approaches of the socio-economic research to environmental sciences. Here we give insight into these issues and provide an overview on the main tasks for the upcoming years.The Pan-Eurasian Experiment (PEEX) program was initiated as a bottom-up approach by the researchers coming from Finland and Russia in October 2012. The PEEX China kick off meeting was held in November 2013. During its five years in operation, the program has established a governance structure and delivered a science plan for the Northern Eurasian region. PEEX has also introduced a concept design for a modelling platform and ground-based in situ observation systems for detecting land-atmosphere and ocean-atmosphere interactions. Today, PEEX has an extensive researcher’s network representing research communities coming from the Nordic countries, Russia and China. PEEX is currently carrying out its research activities on a project basis, but is looking for more coordinated funding bases, especially in Russia and in China. The near-future challenge in implementing the PEEX research agenda is to achieve a successful integration and identification of the methodological approaches of the socio-economic research to environmental sciences. Here we give insight into these issues and provide an overview on the main tasks for the upcoming years.The Pan-Eurasian Experiment (PEEX) program was initiated as a bottom-up approach by the researchers coming from Finland and Russia in October 2012. The PEEX China kick off meeting was held in November 2013. During its five years in operation, the program has established a governance structure and delivered a science plan for the Northern Eurasian region. PEEX has also introduced a concept design for a modelling platform and ground-based in situ observation systems for detecting land-atmosphere and ocean-atmosphere interactions. Today, PEEX has an extensive researcher’s network representing research communities coming from the Nordic countries, Russia and China. PEEX is currently carrying out its research activities on a project basis, but is looking for more coordinated funding bases, especially in Russia and in China. The near-future challenge in implementing the PEEX research agenda is to achieve a successful integration and identification of the methodological approaches of the socio-economic research to environmental sciences. Here we give insight into these issues and provide an overview on the main tasks for the upcoming years.Peer reviewe

    Newly identified climatically and environmentally significant high-latitude dust sources

    Get PDF
    Dust particles from high latitudes have a potentially large local, regional, and global significance to climate and the environment as short-lived climate forcers, air pollutants, and nutrient sources. Identifying the locations of local dust sources and their emission, transport, and deposition processes is important for understanding the multiple impacts of high-latitude dust (HLD) on the Earth\u27s systems. Here, we identify, describe, and quantify the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to 1 concerning globally best productive sources, using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD sources shows seasonal character. It is estimated that high-latitude land areas with higher (SI ≥0.5), very high (SI ≥0.7), and the highest potential (SI ≥0.9) for dust emission cover >1 670 000 km2^{2}, >560 000 km2^{2}, and >240 000 km2^{2}, respectively. In the Arctic HLD region (≥60^{∘} N), land area with SI ≥0.5 is 5.5 % (1 035 059 km2^{2}), area with SI ≥0.7 is 2.3 % (440 804 km2^{2}), and area with SI ≥0.9 is 1.1 % (208 701 km2^{2}). Minimum SI values in the northern HLD region are about 3 orders of magnitude smaller, indicating that the dust sources of this region greatly depend on weather conditions. Our spatial dust source distribution analysis modeling results showed evidence supporting a northern HLD belt, defined as the area north of 50^{∘} N, with a “transitional HLD-source area” extending at latitudes 50–58∘ N in Eurasia and 50–55^{∘} N in Canada and a “cold HLD-source area” including areas north of 60^{∘} N in Eurasia and north of 58^{∘} N in Canada, with currently “no dust source” area between the HLD and low-latitude dust (LLD) dust belt, except for British Columbia. Using the global atmospheric transport model SILAM, we estimated that 1.0 % of the global dust emission originated from the high-latitude regions. About 57 % of the dust deposition in snow- and ice-covered Arctic regions was from HLD sources. In the southern HLD region, soil surface conditions are favorable for dust emission during the whole year. Climate change can cause a decrease in the duration of snow cover, retreat of glaciers, and an increase in drought, heatwave intensity, and frequency, leading to the increasing frequency of topsoil conditions favorable for dust emission, which increases the probability of dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify, and assess the environmental and climate significance of HLD

    Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective

    Get PDF
    The Pan-Eurasian Experiment (PEEX) Science Plan, released in 2015, addressed a need for a holistic system understanding and outlined the most urgent research needs for the rapidly changing Arctic-boreal region. Air quality in China, together with the long-range transport of atmospheric pollutants, was also indicated as one of the most crucial topics of the research agenda. These two geographical regions, the northern Eurasian Arctic-boreal region and China, especially the megacities in China, were identified as a "PEEX region". It is also important to recognize that the PEEX geographical region is an area where science-based policy actions would have significant impacts on the global climate. This paper summarizes results obtained during the last 5 years in the northern Eurasian region, together with recent observations of the air quality in the urban environments in China, in the context of the PEEX programme. The main regions of interest are the Russian Arctic, northern Eurasian boreal forests (Siberia) and peatlands, and the megacities in China. We frame our analysis against research themes introduced in the PEEX Science Plan in 2015. We summarize recent progress towards an enhanced holistic understanding of the land-atmosphere-ocean systems feedbacks. We conclude that although the scientific knowledge in these regions has increased, the new results are in many cases insufficient, and there are still gaps in our understanding of large-scale climate-Earth surface interactions and feedbacks. This arises from limitations in research infrastructures, especially the lack of coordinated, continuous and comprehensive in situ observations of the study region as well as integrative data analyses, hindering a comprehensive system analysis. The fast-changing environment and ecosystem changes driven by climate change, socio-economic activities like the China Silk Road Initiative, and the global trends like urbanization further complicate such analyses. We recognize new topics with an increasing importance in the near future, especially "the enhancing biological sequestration capacity of greenhouse gases into forests and soils to mitigate climate change" and the "socio-economic development to tackle air quality issues".Peer reviewe

    VLADIMIR IVANOVICH VERNADSKY (on the 150th anniversary of his birth)

    No full text
    VLADIMIR IVANOVICH VERNADSKY(on the 150th anniversary of his birth

    Atmosfersko onečišćenje ruskih gradova: procjena emisija i imisija na temelju statističkih podataka

    Get PDF
    In Russia, 60 million people live in the cities with high levels of air pollution. Comparative statistical analysis of pollutant emission and immission processes in 1099 cities in the country revealed the role of climate and other environmental factors, fuel mix, and the impact of agglomeration effect on the distribution of pollutants in the cities’ atmosphere. In 80% of Russia’s cities, airpollution is connected to the levels of anthropogenic emissions; in 5% of the cities, urban pollution levels (pollutants concentration levels according to monitoring (measuring) data) are lower than emissions; and in 15% of the cities, natural conditions amplify the anthropogenic impact. The level of anthropogenic impact in Russia’s cities is largely determined by a combination of low efficiency and high power intensity, outdated industrial specialization and inherited transport networks that cannot adequately accommodate current traffi c flows. The system of proposed indicators of ecological conditions of the urbanenvironment can be used in assessment of the environmental component of quality of life and its modern processes providing the basis for further ecologicaland geochemical studies of urban areas.U Rusiji gotovo 60 milijuna ljudi živi u gradovima s najvišim razinama onečišćenjau zraku. Komparativna statistička analiza procesa emisije i imisije onečišćujućih tvari u1099 gradova u zemlji otkrila je ulogu klime i drugih čimbenika okoliša, mješavine gorivai utjecaja aglomeracije na raspodjelu onečišćujućih tvari u urbanoj atmosferi. U 80%ruskih gradova onečišćenje zraka je povezano s razinama antropogenih emisija; u 5%gradova urbane razine onečišćenja (koncentracije onečišćujućih tvari određene na temelju mjerenja ili monitoringa) niže su od emisija, a u 15% gradova prirodni uvjeti pojačavajuantropogeni utjecaj. Razina antropogenog utjecaja u ruskim gradovima u velikoj je mjeriodređena odnosom niske efikasnosti i visokog utroška energije, zastarjele industrije i naslijeđene prometne infrastructure, koja ne može adekvatno podnijeti trenutnu gustoćuprometa. Sustav predloženih pokazatelja ekoloških uvjeta urbanog okoliša može se koristiti pri procjeni ekološke komponente kvalitete života te može poslužiti kao osnova zadaljnja ekološka i geokemijska istraživanja urbanih područja
    corecore