72 research outputs found

    Measurement of calcium isotopes (δ44Ca) using a multicollector TIMS technique

    Get PDF
    We propose a new“multicollector technique” for the thermal ionization mass spectrometer (TIMS) measurement of calcium (Ca) isotope ratios improving average internal statistical uncertainty of the 44Ca/40Ca measurements by a factor of 2–4 and average sample throughput relative to the commonly used “peak jumping method” by a factor of 3. Isobaric interferences with potassium (40K+) and titanium (48Ti+) or positively charged molecules like 24Mg19F+, 25Mg19F+, 24Mg16O+ and 27Al16O+ can either be corrected or are negligible. Similar, peak shape defects introduced by the large dispersion of the whole Ca isotope mass range from 40–48 atomic mass units (amu) do not influence Ca-isotope ratios. We use a 43Ca/48Ca double spike with an iterative double spike correction algorithm for precise isotope measurement

    A simple role of coral-algal symbiosis in coral calcification based on multiple geochemical tracers

    Get PDF
    Light-enhanced calcification of reef-building corals, which eventually create vast coral reefs, is well known and based on coral-algal symbiosis. Several controversial hypotheses have been proposed as possible mechanisms for connecting symbiont photosynthesis and coral calcification, including pH rise in the internal pool, role of organic matrix secretion, and enzyme activities. Here, based on the skeletal chemical and isotopic compositions of symbiotic and asymbiotic primary polyps of Acropora digitifera corals, we show a simple pH increase in the calcification medium as the predominant contribution of symbionts to calcification of host corals. We used the symbiotic and asymbiotic primary polyps reared for 10 days at four temperatures (27, 29, 31, and 33 °C), five salinities (34, 32, 30, 28, and 26), and four pCO2 levels (<300, 400, 800, and 1000 µatm). As a result of analyzing multiple geochemical tracers (U/Ca, Mg/Ca, Sr/Ca, δ18O, δ13C, and δ44Ca), a clear and systematic decrease in skeletal U/Ca ratio (used as a proxy for calcification fluid pH) was observed, indicating a higher pH of the fluid in symbiotic compared to asymbiotic polyps. In contrast, Mg/Ca ratios (used as a tentative proxy for organic matrix secretion) and δ44Ca (used as an indicator of Ca2+ pathway to the fluid) did not differ between symbiotic and asymbiotic polyps. This suggests that organic matrix secretion related to coral calcification is controlled mainly by the coral host itself, and a transmembrane transport of Ca2+ does not vary according to symbiosis relationship. Skeletal δ18O values of both symbiotic and asymbiotic polyps showed offsets between them with identical temperature dependence. Based on a newly proposed model, behavior of δ18O in the present study seems to reflect the rate of CO2 hydration in the calcifying fluid. Since CO2 hydration is promoted by enzyme carbonic anhydrase, the offset of δ18O values between symbiotic and asymbiotic polyps is attributed to the differences of enzyme activity, although the enzyme is functional even in the asymbiotic polyp. Symbiotic δ13C values in the temperature and salinity experiments were higher compared to those in the asymbiotic polyps due to photosynthesis, although photosynthetic δ13C signals in the pCO2 experiment were masked by the dominant δ13C gradient in dissolved inorganic carbon in seawater caused by 13C-depletd CO2 gas addition in the higher pCO2 treatments. Sr/Ca ratios showed a negligible relationship according to variation of temperature, salinity, and pCO2, although it might be attributed to relatively large deviations of replicates of Sr/Ca ratios in the present study. Overall, only the U/Ca ratio showed a significant difference between symbiotic and asymbiotic polyps throughout all experiments, indicating that the critical effect on coral calcification caused by symbiotic algae is the increase of pH of the calcifying fluid by photosynthesis

    Calcium isotope (δ<sup>44/40</sup>Ca ) variations of Neogene planktonic foraminifera

    Get PDF
    Measurements of the calcium isotopic composition (δ44/40Ca) of planktonic foraminifera from the western equatorial Pacific and the Indian sector of the Southern Ocean show variations of about 0.6‰ over the past 24 Myr. The stacked δ44/40Ca record of Globigerinoides trilobus and Globigerina bulloides indicates a minimum in δ44/40Casw (seawater calcium) at 15 to 16 Ma and a subsequent general increase toward the present, interrupted by a second minimum at 3 to 5 Ma. Applying a coupled calcium/carbon cycle model, we find two scenarios that can explain a large portion of the observed δ44/40Casw variations. In both cases, variations in the Ca input flux to the ocean without proportional changes in the carbonate flux are invoked. The first scenario increases the riverine calcium input to the ocean without a proportional increase of the carbonate flux. The second scenario generates an additional calcium flux from the exchange of Ca by Mg during dolomitization. In both cases the calcium flux variations lead to drastic changes in the seawater Ca concentrations on million year timescales. Our δ44/40Casw record therefore indicates that the global calcium cycle may be much more dynamic than previously assumed

    Calcium isotope fractionation and its controlling factors over authigenic carbonates in the cold seeps of the northern South China Sea

    Get PDF
    In this study, we analyzed stable calcium isotope results of authigenic carbonates from two cold seep areas of the Dongsha area and the Baiyun Sag in the northern South China Sea. The stable isotopes of carbon and oxygen as well as the mineral composition of authigenic carbonates were used to investigate control calcium isotope fractionation. The δ 44/40Ca ratios of the southwestern Dongsha area samples ranged from 1.21‰ to 1.52‰ and the ratio of the Baiyun Sag sample was 1.55‰ of the SRM915a isotope standard. X-ray diffraction analysis showed that the carbonate samples consisted of dolomite, calcite and aragonite, with small amounts of high-Mg calcite and siderite. The δ 13C values of the carbonates of the southwestern Dongsha area varied between −49.21‰ and −16.86‰ of the Vienna PeeDee Belemnite (VPDB) standard and the δ 18O values ranged from 2.25‰ to 3.72‰ VPDB. The δ 13C value of the Baiyun Sag sample was 2.36‰ VPDB and the δ 18O value was 0.44‰ VPDB. The δ 13C values of the carbonates of the southwestern Dongsha area revealed there is methane seeping into this area, with a variable contribution of methane-derived carbon. The sampled carbonates covered a range of δ 13C values suggesting a dominant methane carbon source for the light samples and mixtures of δ 13C values for the heavier samples, with possibly an organic or seawater carbon source. The δ 18O values indicated that there is enrichment in 18O, which is related to the larger oxygen isotope fractionation in dolomite compared to calcite. The results of the Baiyun Sag sample exhibited normal seawater carbon and oxygen isotopic values, indicating that this sample is not related to methane seepage but instead to precipitation from seawater. The relatively high δ 44/40Ca values indicated either precipitation at comparatively high rates in pore-water regimes with high alkalinity, or precipitation from an evolved heavy fluid with high degrees of Ca consumption (Raleigh type fractionation). The dolomite samples from the Dongsha area revealed a clear correlation between the carbon and calcium isotope composition, indicating a link between the amount and/or rate of carbonate precipitation and methane contribution to the bicarbonate source. The results of the three stable isotope systems, mineralogy and petrography, show that mineral composition, the geochemical environment of authigenic carbonates and carbon source can control the calcium isotope fractionation.This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-GJ03-01), the National Natural Science Foundation of China (40706022, U0733003 and 41176052), the National Basic Research Program of China (2009CB219502-4) and the Knowledge Innovation Program of South China Sea Institute of Oceanology, Chinese Academy of Sciences (LYQY200806). The authors thank the University of Aveiro and Universität Münster for the facilities provided for this research. We appreciate the thoughtful and constructive comments provided by editors and reviewers, which improve the manuscript.publishe

    Delta 44/40 Ca, Mg/Ca and Sr/Ca record of Globigerinoides sacculifer and calculated temperatures and salinity changes of ODP Hole 165-999A

    No full text
    The delta18O values of planktonic foraminifera increased in the Caribbean by about 0.5‰ relative to the equatorial East Pacific values between 4.6 and 4.2 Ma as a consequence of the closure of the Central American Gateway (CAG). This increase in delta18O can be interpreted either as an increase in Caribbean sea surface (mixed layer) salinity (SSS) or as a decrease in sea surface temperatures (SST). This problem represents an ideal situation to apply the recently developed paleotemperature proxy delta44/40Ca together with Mg/Ca and d18O on the planktic foraminifer Globigerinoides sacculifer from ODP Site 999. Although differences in absolute temperature calibration of delta44/40Ca and Mg/Ca exist, the general pattern is similar indicating a SST decrease of about 2-3 8C between 4.4 and 4.3 Ma followed by an increase in the same order of magnitude between 4.3 and 4.0 Ma. Correcting the delta18O record for this temperature change and assuming that changes in global ice volume are negligible, the salinity-induced planktonic delta18O signal decreased by about 0.4‰ between 4.4 and 4.3 Ma and increased by about 0.9‰ between 4.3 and 4.0 Ma in the Caribbean. The observed temperature and salinity trends are interpreted to reflect the restricted exchange of surface water between the Caribbean and the Pacific in response to the shoaling of the Panamanian Seaway, possibly accompanied by a southward shift of the Intertropical Convergence Zone (ITCZ) between 4.4 and 4.3 Ma. Differences in Mg/Ca- and delta44/40Ca-derived temperatures can be reconciled by corrections for secular variations of the marine Mg/Ca[sw] and delta44/40Ca, a salinity effect on the Mg/Ca ratio and a constant temperature offset of ~2.5 °C between both SST proxy calibrations

    Zu Motivkreis und Sinngehalt der Cathedra Petri.

    No full text

    Calcium isotope fractionation during coccolith formation in Emiliania huxleyi: Independence of growth and calcification rate

    Get PDF
    [1] Recently, calcium isotope fractionation in the coccolithophore Emiliania huxleyi was shown to exhibit a significant temperature dependency. An important subsequent question in this context is whether the observed fractionation patterns are caused by temperature itself or related growth rate changes. In order to separate growth and calcification rate effects from direct temperature effects, batch culture experiments with the coccolithophore E. huxleyi were conducted under varying light intensities. Despite large changes in cellular growth and calcification rates, calcium isotope fractionation remained constant. Independence of calcium isotope fractionation on growth and calcification was also obtained in two additional sets of experiments in which growth rates changed in response to varying calcium concentration and seawater salinity. These experiments also showed no direct effects of calcium concentration and salinity on calcium isotope fractionation. Values for calcium isotope fractionation of E. huxleyi coccoliths fell within a range of −1.0 to −1.6 (1000 lnα), confirming earlier results. This range is similar to that observed in several foraminiferal species and coccolith oozes, suggesting a rather homogeneous calcium isotopic composition in marine biogenic calcite. Our data further show that the calcium isotope fractionation does not change with changing isotopic composition of seawater. This is a basic requirement for reconstructing the calcium isotopic composition of the ocean over time

    Cellular calcium pathways and isotope fractionation in Emiliania huxleyi

    Get PDF
    The marine calcifying algae Emiliania huxleyi (coccolithophores) was grown in laboratory cultures under varying conditions with respect to the environmental parameters of temperature and carbonate ion concentration [CO32-] concentration. The Ca isotope composition of E. huxleyi's coccoliths reveals new insights into fractionation processes during biomineralization. The temperature-dependent Ca isotope fractionation resembles previous calibrations of inorganic and biogenic calcite and aragonite. Unlike inorganically precipitated calcite, the [CO32-] concentration of the medium has no significant effect on the Ca isotope composition of the coccoliths. These results indicate a decoupling of the chemical properties of the bulk medium and the calcifying vesicle. Cellular Ca pathways of E. huxleyi indicate that fractionation cannot occur at the crystal surface, as occurs during inorganic precipitation. The dominant processes leading to the observed Ca isotope fractionation pattern in E. huxleyi are most likely the dehydration of the Ca aquocomplex at the plasma membrane and the attachment of dissolved Ca to proteins of Ca channels. The independence of Ca isotope fractionation from [CO32-] and the small temperature dependence of E. huxleyi are also important for defining the isotopic signature of the oceanic Ca sink. Since coccolithophores contribute to about half the global CaCO3 production, a relatively uniform isotopic composition of the oceanic Ca sink is further supported
    corecore