113 research outputs found

    Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study

    Get PDF
    The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr−1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr−1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr−1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total bioavailable P flux of about 0.17 Tg-P yr−1 to the oceans is derived. Our calculations further show that in some regions more than half of the bioavailable P deposition flux to the ocean can originate from biological particles, while this contribution is found to maximize in summer when atmospheric deposition impact on the marine ecosystem is the highest due to ocean stratification. Thus, according to this global study, a largely unknown but potentially important role of terrestrial bioaerosols as suppliers of bioavailable P to the global ocean is also revealed. Overall, this work provides new insights to the atmospheric P cycle by demonstrating that biological materials are important carriers of bioavailable P, with very important implications for past and future responses of marine ecosystems to global change

    Regional New Particle Formation over the Eastern Mediterranean and Middle East

    Get PDF
    Atmospheric new particle formation (NPF) events taking place over large distances between locations, featuring similar characteristics, have been the focus of studies during the last decade. The exact mechanism which triggers NPF still remains indefinable, so are the circumstances under which simultaneous occurrence of such events take place in different environments, let alone in environments which are parted by over 1200 km. In this study, concurrent number size distribution measurements were conducted in the urban environments of Athens (Greece) and Amman (Jordan) as well as the regional background site of Finokalia, Crete, all located within a distance of almost 1300 km for a 6-month period (February–July 2017). During the study period Athens and Finokalia had similar occurrence of NPF (around 20%), while the occurrence in Amman was double. When focusing on the dynamic characteristics at each site, it occurs that formation and growth rates at Amman are similar to those at Finokalia, while lower values in Athens can be ascribed to a higher pre-existing particle number at this urban site. By comparing common NPF events there are 5 concomitant days between all three sites, highly related to air masses origin. Additionally, for another 19 days NPF takes place simultaneously between Finokalia and Amman, which also share common meteorological characteristics, adding to a total of 60% out of 41 NPF events observed at Finokalia, also simultaneously occurring in Amman

    Variability in regional background aerosols within the Mediterranean

    Get PDF
    The main objective of this study is the identification of major factors controlling levels and chemical composition of aerosols in the regional background (RB) along the Mediterranean Basin (MB). To this end, data on PM levels and speciation from Montseny (MSY, NE Spain), Finokalia (FKL, Southern Greece) and Erdemli (ERL, Southern Turkey) for the period 2001 to 2008 are evaluated. Important differences on PM levels and composition are evident when comparing the Western and Eastern MBs. The results manifest W-E and N-S PM 10 and PM2.5 gradients along the MB, attributed to the higher frequency and intensity of African dust outbreaks in the EMB, while for PM1 very similar levels are encountered. PM in the EMB is characterized by higher levels of crustal material and sulphate as compared to WMB (and central European sites), however, RB nitrate and OC + EC levels are relatively constant across the Mediterranean and lower than other European sites. Marked seasonal trends are evidenced for PM levels, nitrate (WMB), ammonium and sulphate. Also relatively higher levels of V and Ni (WMB) are measured in the Mediterranean basin, probably as a consequence of high emissions from fuel-oil combustion (power generation, industrial and shipping emissions). Enhanced sulphate levels in EMB compared to WMB were measured. The high levels of sulphate in the EMB may deplete the available gas-phase NH3 so that little ammonium nitrate can form due to the low NH3 levels. This study illustrates the existence of three very important features within the Mediterranean that need to be accounted for when modeling climate effects of aerosols in the area, namely: a) the increasing gradient of dust from WMB to EMB; b) the change of hygroscopic behavior of mineral aerosols (dust) via nitration and sulfation; and c) the abundance of highly hygroscopic aerosols during high insolation (low cloud formation) periods

    Stratospheric impacts on dust transport and air pollution in West Africa and the Eastern Mediterranean

    Get PDF
    Saharan dust intrusions strongly impact Atlantic and Mediterranean coastal regions. Today, most operational dust forecasts extend only 2–5 days. Here we show that on timescales of weeks to months, North African dust emission and transport are impacted by sudden stratospheric warmings (SSWs), which establish a negative North Atlantic Oscillation-like surface signal. Chemical transport models show a large-scale dipolar dust response to SSWs, with the burden in the Eastern Mediterranean enhanced up to 30% and a corresponding reduction in West Africa. Observations of inhalable particulate (PM(10)) concentrations and aerosol optical depth confirm this dipole. On average, a single SSW causes 680–2460 additional premature deaths in the Eastern Mediterranean and prevents 1180–2040 premature deaths in West Africa from exposure to dust-source fine particulate (PM(2.5)). Currently, SSWs are predictable 1–2 weeks in advance. Altogether, the stratosphere represents an important source of subseasonal predictability for air quality over West Africa and the Eastern Mediterranean

    Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution

    Get PDF
    Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 ”m, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 ”m in aerodynamic diameter should only be used with caution. For particles larger than 3 ”m, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5–3 ”m is needed.JRC.H.2-Air and Climat

    P‐NEXFS Analysis of Aerosol Phosphorus Delivered to the Mediterranean Sea

    Get PDF
    Biological productivity in many ocean regions is controlled by the availability of the nutrient phosphorus. In the Mediterranean Sea, aerosol deposition is a key source of phosphorus and understanding its composition is critical for determining its potential bioavailability. Aerosol phosphorus was investigated in European and North African air masses using phosphorus near‐edge X‐ray fluorescence spectroscopy (P‐NEXFS). These air masses are the main source of aerosol deposition to the Mediterranean Sea. We show that European aerosols are a significant source of soluble phosphorus to the Mediterranean Sea. European aerosols deliver on average 3.5 times more soluble phosphorus than North African aerosols and furthermore are dominated by organic phosphorus compounds. The ultimate source of organic phosphorus does not stem from common primary emission sources. Rather, phosphorus associated with bacteria best explains the presence of organic phosphorus in Mediterranean aerosols

    On-flight intercomparison of three miniature aerosol absorption sensors using unmanned aerial systems (UASs)

    Get PDF
    The present study investigates and compares the ground and in-flight performance of three miniaturized aerosol absorption sensors integrated on board small-sized Unmanned Aerial Systems (UASs). These sensors were evaluated during two contrasted field campaigns performed at an urban site, impacted mainly by local traffic and domestic wood burning sources (Athens, Greece), and at a remote regional background site, impacted by long-range transported sources including dust (Cyprus Atmospheric Observatory, Agia Marina Xyliatou, Cyprus). The miniaturized sensors were first intercompared at the ground-level against two commercially available instruments used as a reference. The measured signal of the miniaturized sensors was converted into the absorption coefficient and equivalent black carbon concentration (eBC). When applicable, signal saturation corrections were applied, following the suggestions of the manufacturers. The aerosol absorption sensors exhibited similar behavior against the reference instruments during the two campaigns, despite the diversity of the aerosol origin, chemical composition, sources, and concentration levels. The deviation from the reference during both campaigns concerning (eBC) mass was less than 8 %, while for the absorption coefficient it was at least 15 %. This indicates that those sensors that report black carbon mass are tuned and corrected to measure eBC more accurately than the absorption coefficient. The overall potential use of miniature aerosol absorption sensors on board small UASs is also illustrated. UAS-based absorption measurements were used to investigate the vertical distribution of eBC over Athens up to 1 km above sea level during January 2016, exceeding the top of the planetary boundary layer (PBL). Our results reveal a heterogeneous boundary layer concentration of absorbing aerosol within the PBL intensified in the early morning hours due to the concurrent peak traffic emissions at ground-level and the fast development of the boundary layer. After the full development of the PBL, homogenous concentrations are observed from 100 m a.g.l. to the PBL top
    • 

    corecore