956 research outputs found

    The electrostatic instability for realistic pair distributions in blazar/EBL cascades

    Full text link
    This work revisits the electrostatic instability for blazar-induced pair beams propagating through IGM with the methods of linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only by a factor of 2-4 smaller compared to the maximum. To study the non-linear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations the beam looses only 1\% percent of its energy, and we analytically estimate that the beam would lose its total energy over about 100100 simulation times. Analytical scaling is then used to extrapolate to the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.Comment: Accepted for publication in ApJ (2018), in prin

    Stellar-to-halo mass relation of cluster galaxies

    Get PDF
    In the hierarchical formation model, galaxy clusters grow by accretion of smaller groups or isolated galaxies. During the infall into the centre of a cluster, the properties of accreted galaxies change. In particular, both observations and numerical simulations suggest that its dark matter halo is stripped by the tidal forces of the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, for different stellar mass bins. Assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science verification archive, the CFHTLenS and the CFHT Stripe 82 (CS82) surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we find a stellar to halo mass relation in good agreement with the theoretical expectations from \citet{moster2013} for central galaxies. In the centre of the cluster, we find that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this finding as further evidence for tidal stripping of dark matter haloes in high density environments.Comment: 15 pages, 14 figure

    The transport of cosmic rays in self-excited magnetic turbulence

    Get PDF
    The process of diffusive shock acceleration relies on the efficacy with which hydromagnetic waves can scatter charged particles in the precursor of a shock. The growth of self-generated waves is driven by both resonant and non-resonant processes. We perform high-resolution magnetohydrodynamic simulations of the non-resonant cosmic-ray driven instability, in which the unstable waves are excited beyond the linear regime. In a snapshot of the resultant field, particle transport simulations are carried out. The use of a static snapshot of the field is reasonable given that the Larmor period for particles is typically very short relative to the instability growth time. The diffusion rate is found to be close to, or below, the Bohm limit for a range of energies. This provides the first explicit demonstration that self-excited turbulence reduces the diffusion coefficient and has important implications for cosmic ray transport and acceleration in supernova remnants.Comment: 8 pages, 8 figures, accepted for publication in MNRA

    Nonthermal Electron Acceleration at Collisionless Quasi-perpendicular Shocks

    Full text link
    Shock waves propagating in collisionless heliospheric and astrophysical plasmas have been studied extensively over the decades. One prime motivation is to understand the nonthermal particle acceleration at shocks. Although the theory of diffusive shock acceleration (DSA) has long been the standard for cosmic-ray acceleration at shocks, plasma physical understanding of particle acceleration remains elusive. In this review, we discuss nonthermal electron acceleration mechanisms at quasi-perpendicular shocks, for which substantial progress has been made in recent years. The discussion presented in this review is restricted to the following three specific topics. The first is stochastic shock drift acceleration (SSDA), which is a relatively new mechanism for electron injection into DSA. The basic mechanism, related in-situ observations and kinetic simulations results, and how it is connected with DSA will be discussed. Second, we discuss shock surfing acceleration (SSA) at very high Mach number shocks relevant to young supernova remnants (SNRs). While the original proposal under the one-dimensional assumption is unrealistic, SSA has now been proven efficient by a fully three-dimensional kinetic simulation. Finally, we discuss the current understanding of the magnetized Weibel-dominated shock. Spontaneous magnetic reconnection of self-generated current sheets within the shock structure is an interesting consequence of Weibel-generated strong magnetic turbulence. We argue that high Mach number shocks with both Alfven and sound Mach numbers exceeding 20-40 will likely behave as a Weibel-dominated shock. Despite a number of interesting recent findings, the relative roles of SSDA, SSA, and magnetic reconnection for electron acceleration at collisionless shocks and how the dominant particle acceleration mechanisms change depending on shock parameters remain to be answered.Comment: To appear in Reviews of Modern Plasma Physics as an invited revie

    A Novel approach to quality-of-service provisioning in trusted relay quantum key distribution networks

    Get PDF
    In recent years, noticeable progress has been made in the development of quantum equipment, reflected through the number of successful demonstrations of Quantum Key Distribution (QKD) technology. Although they showcase the great achievements of QKD, many practical difficulties still need to be resolved. Inspired by the significant similarity between mobile ad-hoc networks and QKD technology, we propose a novel quality of service (QoS) model including new metrics for determining the states of public and quantum channels as well as a comprehensive metric of the QKD link. We also propose a novel routing protocol to achieve high-level scalability and minimize consumption of cryptographic keys. Given the limited mobility of nodes in QKD networks, our routing protocol uses the geographical distance and calculated link states to determine the optimal route. It also benefits from a caching mechanism and detection of returning loops to provide effective forwarding while minimizing key consumption and achieving the desired utilization of network links. Simulation results are presented to demonstrate the validity and accuracy of the proposed solutions

    A Process for Co-Designing Educational Technology Systems for Refugee Children

    Get PDF
    There is a growing interest in the potential for technology to facilitate emergency education of refugee children. However, designing in this space requires knowledge of the displaced population and the contextual dynamics surrounding it. Design should therefore be informed by both existing research across relevant disciplines, and from the practical experience of those who are on the ground facing the problem in real life. This paper describes a process for designing appropriate technology for these settings. The process draws on literature from emergency education, student engagement and motivation, educational technology, and participatory design. We emphasise a thorough understanding of the problem definition, the nature of the emergency, and of socio-cultural aspects that can inform the design process. We describe how this process was implemented leading to the design of a digital learning space for children living in a refugee camp in Greece. This drew on involving different groups of participants such as social-workers, parents, and children
    corecore