119 research outputs found

    Demonstration of extracellular peptidylarginine deiminase (PAD) activity in synovial fluid of patients with rheumatoid arthritis using a novel assay for citrullination of fibrinogen

    Get PDF
    INTRODUCTION: Members of the peptidylarginine deiminase (PAD) family catalyse the posttranslational conversion of peptidylarginine to peptidylcitrulline. Citrullination of proteins is well described in rheumatoid arthritis (RA), and hypercitrullination of proteins may be related to inflammation in general. PAD activity has been demonstrated in various cell lysates, but so far not in synovial fluid. We aimed to develop an assay for detection of PAD activity, if any, in synovial fluid from RA patients. METHODS: An enzyme-linked immunosorbent assay using human fibrinogen as the immobilized substrate for citrullination and anti-citrullinated fibrinogen antibody as the detecting agent were used for measurement of PAD activity in synovial fluid samples from five RA patients. The concentrations of PAD2 and calcium were also determined. RESULTS: Approximately 150 times lower levels of recombinant human PAD2 (rhPAD2) than of rhPAD4 were required for citrullination of fibrinogen. PAD activity was detected in four of five synovial fluid samples from RA patients and correlated with PAD2 concentrations in the samples (r = 0.98, P = 0.003). The calcium requirement for half-maximal activities of PAD2 and PAD4 were found in a range from 0.35 to 1.85 mM, and synovial fluid was found to contain sufficient calcium levels for the citrullination process to occur. CONCLUSIONS: We present an assay with high specificity for PAD2 activity and show that citrullination of fibrinogen can occur in cell-free synovial fluid from RA patients

    Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest

    Get PDF
    Most cell culture studies have been performed at atmospheric oxygen tension of 21%, however the physiological oxygen tension is much lower and is a factor that may affect skeletal muscle myoblasts. In this study we have compared activation of G0 arrested myoblasts in 21% O2 and in 1% O2 in order to see how oxygen tension affects activation and proliferation of human myoblasts.Human myoblasts were isolated from skeletal muscle tissue and G0 arrested in vitro followed by reactivation at 21% O2 and 1% O2. The effect was assesses by Real-time RT-PCR, immunocytochemistry and western blot.We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β-catenin indicated that notch signaling may be induced in 21% O2, while the canonical Wnt signaling may be induced in 1% O2 during activation and proliferation of myoblasts

    Single versus Serial Measurements of Neuron-Specific Enolase and Prediction of Poor Neurological Outcome in Persistently Unconscious Patients after Out-Of-Hospital Cardiac Arrest - A TTM-Trial Substudy

    Get PDF
    Background: Prediction of neurological outcome is a crucial part of post cardiac arrest care and prediction in patients remaining unconscious and/or sedated after rewarming from targeted temperature management (TTM) remains difficult. Current guidelines suggest the use of serial measurements of the biomarker neuron-specific enolase (NSE) in combination with other predictors of outcome in patients admitted after out-of-hospital cardiac arrest (OHCA). This study sought to investigate the ability of NSE to predict poor outcome in patients remaining unconscious at day three after OHCA. In addition, this study sought to investigate if serial NSE measurements add incremental prognostic information compared to a single NSE measurement at 48 hours in this population. Methods: This study is a post-hoc sub-study of the TTM trial, randomizing OHCA patients to a course of TTM at either 33°C or 36°C. Patients were included from sites participating in the TTMPLOS trial biobank sub study. NSE was measured at 24, 48 and 72 hours after ROSC and followup was concluded after 180 days. The primary end point was poor neurological function or death defined by a cerebral performance category score (CPC-score) of 3 to 5. Results: A total of 685 (73%) patients participated in the study. At day three after OHCA 63 (9%) patients had died and 473 (69%) patients were not awake. In these patients, a single NSE measurement at 48 hours predicted poor outcome with an area under the receiver operating characteristics curve (AUC) of 0.83. A combination of all three NSE measurements yielded the highest discovered AUC (0.88, p = .0002). Easily applicable combinations of serial NSE measurements did not significantly improve prediction over a single measurement at 48 hours (AUC 0.58-0.84 versus 0.83). Conclusion: NSE is a strong predictor of poor outcome after OHCA in persistently unconscious patients undergoing TTM, and NSE is a promising surrogate marker of outcome in clinical trials. While combinations of serial NSE measurements may provide an increase in overall prognostic information, it is unclear whether actual clinical prognostication with low false-positive rates is improved by application of serial measurements in persistently unconscious patients. The findings of this study should be confirmed in another prospective cohort

    Risk Stratification Among Survivors of Cardiac Arrest Considered for Coronary Angiography.

    Get PDF
    BACKGROUND: The American College of Cardiology Interventional Council published consensus-based recommendations to help identify resuscitated cardiac arrest patients with unfavorable clinical features in whom invasive procedures are unlikely to improve survival. OBJECTIVES: This study sought to identify how many unfavorable features are required before prognosis is significantly worsened and which features are most impactful in predicting prognosis. METHODS: Using the INTCAR (International Cardiac Arrest Registry), the impact of each proposed unfavorable feature on survival to hospital discharge was individually analyzed. Logistic regression was performed to assess the association of such unfavorable features with poor outcomes. RESULTS: Seven unfavorable features (of 10 total) were captured in 2,508 patients successfully resuscitated after cardiac arrest (ongoing cardiopulmonary resuscitation and noncardiac etiology were exclusion criteria in our registry). Chronic kidney disease was used in lieu of end-stage renal disease. In total, 39% survived to hospital discharge. The odds ratio (OR) of survival to hospital discharge for each unfavorable feature was as follows: age \u3e85 years OR: 0.30 (95% CI: 0.15 to 0.61), time-to-ROSC \u3e30 min OR: 0.30 (95% CI: 0.23 to 0.39), nonshockable rhythm OR: 0.39 (95% CI: 0.29 to 0.54), no bystander cardiopulmonary resuscitation OR: 0.49 (95% CI: 0.38 to 0.64), lactate \u3e7 mmol/l OR: 0.50 (95% CI: 0.40 to 0.63), unwitnessed arrest OR: 0.58 (95% CI: 0.44 to 0.78), pH85 years, time-to-ROSC \u3e30 min, and non-ventricular tachycardia/ventricular fibrillation) together or ≥6 unfavorable features predicted a ≤10% chance of survival to discharge. CONCLUSIONS: Patients successfully resuscitated from cardiac arrest with 6 or more unfavorable features have a poor long-term prognosis. Delaying or even forgoing invasive procedures in such patients is reasonable

    Integrating new approaches to atrial fibrillation management: the 6th AFNET/EHRA Consensus Conference.

    Get PDF
    There are major challenges ahead for clinicians treating patients with atrial fibrillation (AF). The population with AF is expected to expand considerably and yet, apart from anticoagulation, therapies used in AF have not been shown to consistently impact on mortality or reduce adverse cardiovascular events. New approaches to AF management, including the use of novel technologies and structured, integrated care, have the potential to enhance clinical phenotyping or result in better treatment selection and stratified therapy. Here, we report the outcomes of the 6th Consensus Conference of the Atrial Fibrillation Network (AFNET) and the European Heart Rhythm Association (EHRA), held at the European Society of Cardiology Heart House in Sophia Antipolis, France, 17-19 January 2017. Sixty-two global specialists in AF and 13 industry partners met to develop innovative solutions based on new approaches to screening and diagnosis, enhancing integration of AF care, developing clinical pathways for treating complex patients, improving stroke prevention strategies, and better patient selection for heart rate and rhythm control. Ultimately, these approaches can lead to better outcomes for patients with AF

    A structured approach to neurologic prognostication in clinical cardiac arrest trials

    Get PDF
    Brain injury is the dominant cause of death for cardiac arrest patients who are admitted to an intensive care unit, and the majority of patients die after withdrawal of life sustaining therapy (WLST) based on a presumed poor neurologic outcome. Mild induced hypothermia was found to decrease the reliability of several methods for neurological prognostication. Algorithms for prediction of outcome, that were developed before the introduction of mild hypothermia after cardiac arrest, may have affected the results of studies with hypothermia-treated patients. In previous trials on neuroprotection after cardiac arrest, including the pivotal hypothermia trials, the methods for prognostication and the reasons for WLST were not reported and may have had an effect on outcome. In the Target Temperature Management trial, in which 950 cardiac arrest patients have been randomized to treatment at 33 degrees C or 36 degrees C, neuroprognostication and WLST-decisions are strictly protocolized and registered. Prognostication is delayed to at least 72 hours after the end of the intervention period, thus a minimum of 4.5 days after the cardiac arrest, and is based on multiple parameters to account for the possible effects of hypothermia
    • …
    corecore