11 research outputs found

    Utilisation de grilles de calcul pour la génomique comparative

    Get PDF
    International audienceLarge scale phylogenomics and comparative genomics require complex computational methods (parsimony, maximum likelihood, bayesian methods, MCMC, etc.) associated with massively distributed calculation. In this respect, grid computing plays a crucial role. Here we present how we processed exhaustive similarity searches on several millions of sequences with BLAST, using two different grids (TIDRA and GRISBI)

    Utilisation de grilles de calcul pour la génomique comparative

    Get PDF
    International audienceLarge scale phylogenomics and comparative genomics require complex computational methods (parsimony, maximum likelihood, bayesian methods, MCMC, etc.) associated with massively distributed calculation. In this respect, grid computing plays a crucial role. Here we present how we processed exhaustive similarity searches on several millions of sequences with BLAST, using two different grids (TIDRA and GRISBI)

    PREDON Scientific Data Preservation 2014

    Get PDF
    LPSC14037Scientific data collected with modern sensors or dedicated detectors exceed very often the perimeter of the initial scientific design. These data are obtained more and more frequently with large material and human efforts. A large class of scientific experiments are in fact unique because of their large scale, with very small chances to be repeated and to superseded by new experiments in the same domain: for instance high energy physics and astrophysics experiments involve multi-annual developments and a simple duplication of efforts in order to reproduce old data is simply not affordable. Other scientific experiments are in fact unique by nature: earth science, medical sciences etc. since the collected data is "time-stamped" and thereby non-reproducible by new experiments or observations. In addition, scientific data collection increased dramatically in the recent years, participating to the so-called "data deluge" and inviting for common reflection in the context of "big data" investigations. The new knowledge obtained using these data should be preserved long term such that the access and the re-use are made possible and lead to an enhancement of the initial investment. Data observatories, based on open access policies and coupled with multi-disciplinary techniques for indexing and mining may lead to truly new paradigms in science. It is therefore of outmost importance to pursue a coherent and vigorous approach to preserve the scientific data at long term. The preservation remains nevertheless a challenge due to the complexity of the data structure, the fragility of the custom-made software environments as well as the lack of rigorous approaches in workflows and algorithms. To address this challenge, the PREDON project has been initiated in France in 2012 within the MASTODONS program: a Big Data scientific challenge, initiated and supported by the Interdisciplinary Mission of the National Centre for Scientific Research (CNRS). PREDON is a study group formed by researchers from different disciplines and institutes. Several meetings and workshops lead to a rich exchange in ideas, paradigms and methods. The present document includes contributions of the participants to the PREDON Study Group, as well as invited papers, related to the scientific case, methodology and technology. This document should be read as a "facts finding" resource pointing to a concrete and significant scientific interest for long term research data preservation, as well as to cutting edge methods and technologies to achieve this goal. A sustained, coherent and long term action in the area of scientific data preservation would be highly beneficial

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    iRODS at CC-IN2P3

    No full text
    International audienceIn this paper, we will show how iRODS is being usedd at CC-IN2P3, the future plans, code development, and also SRB to iRODS migratio

    Pascal Le Floch: 1958-2010

    No full text
    International audienc

    Mise en place d'un gestionnaire de données léger, pluridisciplinaire et national pour les données scientifiques

    No full text
    Mise en place d'un gestionnaire de données léger, pluridisciplinaire et national pour les données scientifique

    PREDON Scientific Data Preservation 2014

    No full text
    LPSC14037Scientific data collected with modern sensors or dedicated detectors exceed very often the perimeter of the initial scientific design. These data are obtained more and more frequently with large material and human efforts. A large class of scientific experiments are in fact unique because of their large scale, with very small chances to be repeated and to superseded by new experiments in the same domain: for instance high energy physics and astrophysics experiments involve multi-annual developments and a simple duplication of efforts in order to reproduce old data is simply not affordable. Other scientific experiments are in fact unique by nature: earth science, medical sciences etc. since the collected data is "time-stamped" and thereby non-reproducible by new experiments or observations. In addition, scientific data collection increased dramatically in the recent years, participating to the so-called "data deluge" and inviting for common reflection in the context of "big data" investigations. The new knowledge obtained using these data should be preserved long term such that the access and the re-use are made possible and lead to an enhancement of the initial investment. Data observatories, based on open access policies and coupled with multi-disciplinary techniques for indexing and mining may lead to truly new paradigms in science. It is therefore of outmost importance to pursue a coherent and vigorous approach to preserve the scientific data at long term. The preservation remains nevertheless a challenge due to the complexity of the data structure, the fragility of the custom-made software environments as well as the lack of rigorous approaches in workflows and algorithms. To address this challenge, the PREDON project has been initiated in France in 2012 within the MASTODONS program: a Big Data scientific challenge, initiated and supported by the Interdisciplinary Mission of the National Centre for Scientific Research (CNRS). PREDON is a study group formed by researchers from different disciplines and institutes. Several meetings and workshops lead to a rich exchange in ideas, paradigms and methods. The present document includes contributions of the participants to the PREDON Study Group, as well as invited papers, related to the scientific case, methodology and technology. This document should be read as a "facts finding" resource pointing to a concrete and significant scientific interest for long term research data preservation, as well as to cutting edge methods and technologies to achieve this goal. A sustained, coherent and long term action in the area of scientific data preservation would be highly beneficial
    corecore