18 research outputs found
An evaluation of indirubin analogues as phosphorylase kinase inhibitors
Phosphorylase kinase (PhK) has been linked with a number of conditions such as glycogen storage diseases, psoriasis, type 2 diabetes and more recently, cancer (Camus S. et al., Oncogene 2012, 31, 4333). However, with few reported structural studies on PhK inhibitors, this hinders a structure based drug design approach. In this study, the inhibitory potential of 38 indirubin analogues have been investigated. 11 of these ligands had IC50 values in the range 0.170 – 0.360 µM, with indirubin-3’-acetoxime (1c) the most potent. 7-bromoindirubin-3’-oxime (13b), an antitumor compound which induces caspase-independent cell-death (Ribas J. et al., Oncogene, 2006, 25, 6304) is revealed as a specific inhibitor of PhK (IC50 = 1.8 µM). Binding assay experiments performed using both PhK-holo and PhK-γtrnc confirmed the inhibitory effects to arise from binding at the kinase domain (γ subunit). High level computations using QM/MM-PBSA binding free energy calculations were in good agreement with experimental binding data, as determined using statistical analysis, and support binding at the ATP-binding site. The value of a QM description for the binding of halogenated ligands exhibiting -hole effects is highlighted. A new statistical metric, the ‘sum of the modified logarithm of ranks’ (SMLR), has been defined which measures performance of a model for both the “early recognition” (ranking earlier/higher) of active compounds and their relative ordering by potency. Through a detailed structure activity relationship analysis considering other kinases (CDK2, CDK5 and GSK-3α/β), 6’(Z) and 7(L) indirubin substitutions have been identified to achieve selective PhK inhibition. The key PhK binding site residues involved can also be targeted using other ligand scaffolds in future work
Criblage virtuel (les essais in silico)
PARIS-BIUP (751062107) / SudocSudocFranceF
Des prébiotiques capables d’induire des mécanismes de tolérance sans réduire les symptômes d’allergie chez la souris
National audienc
Amino-pyrrolidine tricarboxylic acids give new insight into group III metabotropic glutamate receptor activation mechanism.
Collaboration Société Faust PharmaceuticalsInternational audienceLike most class C G-protein-coupled receptors, metabotropic glutamate (mGlu) receptors possess a large extracellular domain where orthosteric ligands bind. Crystal structures revealed that this domain, called Venus FlyTrap (VFT), adopts a closed or open conformation upon agonist or antagonist binding, respectively. We have described amino-pyrrolidine tricarboxylic acids (APTCs), including (2S,4S)-4-amino-1-[(E)-3-carboxyacryloyl]pyrrolidine-2,4-dicarboxylic acid (FP0429), as new selective group III mGlu agonists. Whereas FP0429 is an almost full mGlu4 agonist, it is a weak and partial agonist of the closely related mGlu8 subtype. To get more insight into the activation mechanism of mGlu receptors, we aimed to elucidate why FP0429 behaves differently at these two highly homologous receptors by focusing on two residues within the binding site that differ between mGlu4 and mGlu8. Site-directed mutagenesis of Ser157 and Gly158 of mGlu4 into their mGlu8 homologs (Ala) turned FP0429 into a weak partial agonist. Conversely, introduction of Ser and Gly residues into mGlu8 increased FP0429 efficacy. Docking of FP0429 in mGlu4 VFT 3D model helped us characterize the role of each residue. Indeed, mGlu4 Ser157 seems to have an important role in FP0429 binding, whereas Gly158 may allow a deeper positioning of this agonist in the cavity of lobe I, thereby ensuring optimal interactions with lobe II residues in the fully closed state of the VFT. In contrast, the presence of a methyl group in mGlu8 (Ala instead of Gly) weakens the interactions with the lobe II residues. This probably results in a less stable or a partially closed form of the mGlu8 VFT, leading to partial receptor activation
CCDC 1401228: Experimental Crystal Structure Determination
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures
Reinvestigation of the Branimycin Stereochemistry at Position 17‑C
A conformational study of branimycin
was performed using single-crystal
X-ray crystallography to characterize the solid-state form, while
a combination of NMR spectroscopy and molecular modeling was employed
to gain information about the solution structure. Comparison of the
crystal structure with its solution counterpart showed no significant
differences in conformation, confirming the relative rigidity of the
tricyclic system. However, these experiments revealed that the formerly
proposed stereochemistry of branimycin at 17-C should be revised