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Abstract 
 

Phosphorylase kinase (PhK) has been linked with a number of conditions such as glycogen storage 

diseases, psoriasis, type 2 diabetes and more recently, cancer (Camus S. et al., Oncogene 2012, 31, 

4333). However, with few reported structural studies on PhK inhibitors, this hinders a structure 

based drug design approach. In this study, the inhibitory potential of 38 indirubin analogues have 

been investigated. 11 of these ligands had IC50 values in the range 0.170 – 0.360 µM, with 

indirubin-3’-acetoxime (1c) the most potent. 7-bromoindirubin-3’-oxime (13b), an antitumor 

compound which induces caspase-independent cell-death (Ribas J. et al., Oncogene, 2006, 25, 

6304) is revealed as a specific inhibitor of PhK (IC50 = 1.8 µM). Binding assay experiments 

performed using both PhK-holo and PhK-γtrnc confirmed the inhibitory effects to arise from 

binding at the kinase domain (γ subunit). High level computations using QM/MM-PBSA binding 

free energy calculations were in good agreement with experimental binding data, as determined 

using statistical analysis, and support binding at the ATP-binding site. The value of a QM 

description for the binding of halogenated ligands exhibiting σ-hole effects is highlighted. A new 

statistical metric, the ‘sum of the modified logarithm of ranks’ (SMLR), has been defined which 

measures performance of a model for both the “early recognition” (ranking earlier/higher) of active 

compounds and their relative ordering by potency. Through a detailed structure activity 

relationship analysis considering other kinases (CDK2, CDK5 and GSK-3α/β), 6’(Z) and 7(L) 

indirubin substitutions have been identified to achieve selective PhK inhibition. The key PhK 

binding site residues involved can also be targeted using other ligand scaffolds in future work.   

 

Keywords: QM/MM-PBSA, indirubins, sigma-hole, type 2 diabetes, kinase inhibitors, glycogen 

phosphorylase 
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Introduction 

Many physiological processes in cells are controlled via reversible phosphorylation of target 

proteins through the activity of kinases and phosphatases. Dysfunction affects signal transduction 

and leads to numerous diseases such as cancer, neurodegenerative diseases and diabetes [1].  

Among the hundreds of kinases/phosphatases identified to date, phosphorylase kinase (PhK) plays 

a key role in the glycogen metabolism, catalyzing the phosphorylation of a single residue (Ser14) 

on glycogen phosphorylase b (GPb), creating its more active GPa state [2]. PhK is a large 1.3 MDa 

hexadecameric complex composed of four subunits (α, β, γ, δ). The γ subunit is the kinase domain 

(45 kDa) carrying the active site, the δ subunit is an endogeneous calmodulin conferring the 

calcium sensitivity, while the α and β subunits possess phosphorylation sites which regulate the 

activity of PhK. Genetic mutation on the genes coding for PhK induce severe disorders like 

glycogen storage diseases (i.e. VIII, IX and X) whereas physiological hyperactivity of the enzyme 

was shown to be linked with psoriasis [3, 4]. The highly specific activity of PhK also makes it a 

potential target for drugs involved in the control of the glucose metabolism, such as type 2 diabetes 

(T2D) [2, 5]. Recently, PhK has also been identified as a new potential target for development of 

anti-angiogenic therapies [6]. The structure of the PhK heterotetramer (αβγδ)4 has been determined 

to 9.9 Å resolution using cryo-electron microscopy single particle reconstruction [7]. While the 

kinase domain of PhK (PhK-γtrnc) has been expressed and crystallized together with nucleotides 

(ATP and ATP analogue, AMPPMP) and substrate analogues [2, 8-10], until very recently this 

had not been achieved with inhibitors. In this regard, the crystal structure of the γ subunit of human 

PhK (hg2-PhK) in complex with sunitinib (pdb: 2Y7J) has been solved. This work has yet to be 

published, but this is the first successful crystallization of the γ-PhK catalytic site without the 
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presence of ATP. Recently, also, we have refined using molecular dynamics the structure of PhK-

γtrnc in complex with two indirubin and two staurosporine derivatives [5, 11].   

Although kinase inhibitors have been discovered from various sources [12-15], the major 

obstacle to kinase-directed drugs is the cross-inhibition linked to their highly homologous ATP-

binding sites [12]. Staurosporine, although too toxic for clinical use, is a potent inhibitor of PhK 

(Ki = 0.37 nM) [5]. However, its kinase activity is not specific to PhK [16]. Its analogue, KT5720, 

is a more specific inhibitor of PhK (Ki = 18.4 nM) and interactions leading to its specificity we 

have previously studied [5]. Meanwhile, competitive inhibitors from the indirubin family acting 

on CDKs and GSK-3 have been quite extensively studied [17-20] but information on their activity 

towards PhK has been limited and has in part motivated the current study [5].  Indirubin (1a, 

Scheme 1) is a natural bis-indol molecule found in plants and mollusks [21]. It has demonstrated 

antileukemic properties, although the exact mechanism of this remains unclear [22]. Modifications 

of indirubin have lead to the discovery of other potential anticancer compounds [20, 22-24]. The 

indirubin family of compounds target several kinases, some of which have been co-crystallised 

with indirubin analogues: GSK3, CDK2, CDK5, PfPK5 [18, 25-30]. Despite this apparent 

promiscuity towards kinases, through modification of the indirubin scaffold, kinase specific 

indirubin inhibitors can be designed.[18, 19] For example, an indirubin analogue over 4000 times 

more potent for GSK-3α/β compared to CDK1/cyclin B and CDK5/p25 has been reported [18]. In 

terms of PhK inhibition, we recently reported indirubin-3’-oxime (1b, Scheme 1) as a moderately 

potent inhibitor of PhK (IC50 = 144 nM) [5]. However, apart from this study, structure based design 

studies on PhK ATP-binding site inhibitor are limited. In light of recent results highlighting PhK 

inhibition from a therapeutic perspective [6], there is an immediate need for new rational drug 

design efforts.  
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Scheme 1. Indirubin (1a) and indirubin-3’oxime (1b) together with their IC50’s for PhK-holo 

inhibition and whose binding at PhK was studied in detail in previous work [5]. Shown also are 

the hinge region hydrogen bonds as observed in MD studies [5], which is the “expected binding 

mode” consistent with the binding of indirubins to other kinases [18, 25, 27, 29]. However, a recent 

study for the binding of indirubins at DYRK kinases, revealed that an “inverse binding mode” is 

also possible [30]. L, W, X, Y and Z represent the substitution positions of the 38 indirubin 

analogues studied in this work (Table 1), while substitution of the hydrogen on N1 with methyl 

was also explored.    

 

In the current study, the binding potential (IC50’s) of 38 indirubin derivatives (shown in 

Table 1) against PhK has been studied. Experiments using both the truncated catalytic site (PhK-

γtrnc) and holoenzyme (PhK-holo) for 5 of these analogues suggest that the inhibitors target the γ-
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subunit. Accordingly, exploiting our previously refined MD structure of PhK-γtrnc in complex 

with indirubin-3’-oxime [5], we have performed extensive modelling calculations in the form of 

Glide molecular docking followed by more advanced Quantum Mechanics/Molecular Mechanics 

(QM/MM) and QM/MM-PBSA (Poisson Boltzmann Surface Area) computations [31] to better 

understand the binding mechanisms at the PhK ATP-binding site. The performance of the 

computational models are compared by statistical analysis, for which we defined a new metric, the 

‘sum of the modified logarithm of ranks’ (SMLR). Finally, the activity and potential selectivity of 

indirubin analogues towards PhK inhibition is thoroughly analysed via structure activity 

relationship (SAR) analysis. The predicted thermodynamics of binding from the QM/MM-PBSA 

calculations and binding data (structural and activity) for homologous kinases is considered for 

this purpose. 

 

MATERIALS & METHODS 

Protein production: The holoenzyme of PhK from fast-twitch skeletal muscle of female New 

Zealand White rabbits was purified by the modified method of Cohen [32] as described in Venien-

Bryan et al.[33]. PhK-γtrnc was expressed as an N-terminal Glutathione-S-Transferase (GST) 

fusion [5]. Rabbit muscle GPb was purified according to Fischer and Krebs [34]. The 

concentrations of GPb and PhK were determined from absorbance measurements at 280 nm using 

extinction coefficients ε1%
1cm =13.2 [35] and ε1%

1cm =12.4 [36], respectively. PhK-γtrnc 

concentration was determined according to Bradford [37]. 

Synthesis of indirubins: The 38 indirubin analogues were prepared and characterized according 

to methods we have described previously [18, 38]. 
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IC50 measurements: The enzymatic activities of PhK-holo and PhK-γtrnc were measured by 

monitoring the conversion of glycogen phosphorylase b (GPb) to GPa by assaying phosphorylase 

activity in the presence of 10 µM AMP and 0.5 mM caffeine in the direction of glycogen synthesis 

[2, 39]. In the presence of inhibitors, activities were assayed at constant concentrations of GPb (1 

mg/ml) and ATP (50 μΜ). Blank values were subtracted and activities were calculated after 20 

min of incubation at 30°C. The concentration of the various indirubin analogues tested varied from 

25 nM to 50 μΜ during the assay. Activities were expressed as percentages of the maximal activity 

(i.e. in the absence of inhibitors). Most of the inhibitors showed adequate solubility up to 1 mM in 

DMSO and the presence of the solvent did not affect the activities of both enzyme forms if its final 

concentration in the assay was kept below 5% (v/v). None of the compounds tested showed 

significant inhibition towards GPb. Data was analysed using the non-linear regression program 

GraFit [40].  

Protein and ligand preparation for calculations: A MD model of PhK-γtrnc in complex with 

indirubin-3’-oxime (1b, Scheme 1) from our previous work [5] was used as the starting structure 

for docking of the 38 indirubins, with all H2Os and counter-ions deleted. This complex corresponds 

to the minimized representative receptor-ligand conformation which gave the lowest binding free 

energy (BFE) from MM-GBSA calculations [11] and which exhibited all the key protein-ligand 

binding interactions from the MD simulations. The 38 indirubins were prepared for calculations 

using Schrödinger’s Maestro and the LigPrep 2.5 program [31]. 

Docking calculations: Flexible-ligand docking calculations were initially performed using Glide 

5.8 in both standard- (SP) and extra-precision (XP) modes, as well as with quantum mechanics – 

polarized ligand docking (QM-PLD) [31]. Using the PhK-γtrnc/indirubin-3’oxime (1b) MD 
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model, the shape and properties of the catalytic site were mapped onto grids with dimensions ~ 

23.7 Å × 23.7 Å × 23.7 Å, centred on the 1b ligand. Standard parameters were applied including 

van der Waals (vdW) scaling of non-polar atoms (by 0.8) to include modest induced-fit effects, 

with up to 5 poses per ligand saved in the Glide-SP and -XP calculations. As per our previous 

study [5], protein “hinge-region” hydrogen bonds (c.f. Scheme 1) were defined for Asp104(O), 

Met106(H) and Met106(O), with accepted ligand docking poses required to make at least one of 

these contacts. For the QM-PLD calculations, the output docking poses from Glide SP docking 

with OPLS-AA atomic partial charges were used to obtain more “accurate” electrostatic potential 

(ESP) fit ligand atomic charges using the program QSite 5.8 and the QM/MM method in the ‘field’ 

of the receptor. Single point energy calculations using the default B3LYP [41-43] density 

functional theory (DFT) method and the LACVP* basis set on the ligands (QM region) and the 

OPLS-AA forcefield for the receptor (MM region) were used for this purpose. The ligands with 

the reparametrized atomic partial charges were then redocked into the catalytic site using Glide-

XP.  

QM/MM and QM/MM-PBSA calculations: Two types of post-docking calculations were 

employed. QM/MM interaction energies (ΔEQM/MM) were calculated directly for each saved 

docking pose (up to 5 per ligand), considering the bound and unbound states of the predicted 

protein-ligand complexes: 

                                            ∆𝐸𝐸𝑄𝑄𝑄𝑄/𝑄𝑄𝑄𝑄 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑟𝑟𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑐𝑐𝑙𝑙𝑙𝑙          𝐸𝐸𝐸𝐸. (1) 

Ligand binding free energies were also calculated using QM/MM-PBSA with Eq. (2), the 

foundations of which we have described before [44]. 

                                           ∆𝐺𝐺𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏 =  ∆𝐸𝐸𝑄𝑄𝑄𝑄/𝑄𝑄𝑄𝑄 + ∆𝐺𝐺𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠 − 𝑇𝑇∆𝑆𝑆𝑄𝑄𝑄𝑄      𝐸𝐸𝐸𝐸. (2)
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For these calculations, therefore, re-ranking of protein-ligand binding conformations from docking 

was performed and a more theoretically rigorous estimate of relative activities obtained. All 

calculations employed DFT with the M06-2X functional [45] and the all electron MIDIX basis set 

[46, 47] was used for the QM region (the ligands), previously shown to be effective for halogen 

substituted ligands in studies of this type [48]. The PhKγ-trnc protein was described using MM 

with the OPLS-AA(2005) forcefield [49]. No cut-off for non-bonded interactions was employed. 

Effectively, the MM region polarizes the QM region, with electrostatic interactions between the 

MM point charges and the QM wavefunction, and van der Waals interactions between QM and 

MM atoms accounted for [50]. Bulk solvation effects were included using PBSA [51], allowing 

∆𝐺𝐺𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠 to be calculated. The default solute (internal) dielectric constant of 1.0 was used. An 

estimate for the loss of solute entropy (∆𝑆𝑆𝑄𝑄𝑄𝑄) on binding was calculated using MM with the OPLS-

AA(2005) forcefield [49] and the Rigid Rotor Harmonic Oscillator (RRHO) approximation. Using 

this method, the change in vibrational, rotational and translational entropy of the ligands on 

binding was considered. All QM/MM and QM/MM-PBSA calculations were performed using 

QSite 5.8 [31]. RRHO calculations were performed using MacroModel 9.9 [31].  

Statistical Analysis of Binding Predictions: Predicted ranking of the indirubin analogue potencies 

was based on GlideScore for all docking calculations, ∆𝐸𝐸𝑄𝑄𝑄𝑄/𝑄𝑄𝑄𝑄 (Eq. (1)) for the QM/MM 

calculations and ∆𝐺𝐺𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏 (Eq. (2)) for the QM/MM-PBSA calculations. Performance of the 

different docking and post-docking methods with respect to recovery of the actives (compounds 

with experimental inhibition constants below a defined threshold, e.g. IC50’s ≤ 10 µM) was 

analyzed in a statistical manner [52, 53]. Several performance metrics were considered including 

the basic hit-rate to those that better highlight “early recognition” (the ranking of actives 

early/higher in an ordered list). The hit-rate used is a simple metric which represents the % of real 
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actives in the predicted top ranked n ligands, where n is the number of actives. A receiver operator 

characteristic (ROC) plot shows the relationship between the true positive rate (TPR, or sensitivity) 

and the false positive rate (FPR, or specificity), with the Area Under the ROC curve (AU-ROC) a 

common way to summarize the overall quality of a ROC plot:  

𝐴𝐴𝐴𝐴 − 𝑅𝑅𝑅𝑅𝑅𝑅 =  
1
𝑛𝑛
�(1 − 𝑓𝑓𝑙𝑙)   𝐸𝐸𝐸𝐸. (3
𝑏𝑏

𝑙𝑙=1

) 

where fi is the fraction of non-actives ranked higher than the ith active. AU-ROC varies between 

0 and 1, where 0.5 corresponds to a random ranking and 1 meaning that all actives are ranked 

above the inactives. The AU-ROC values, however, do not distinguish early and late performance 

[52]. Accordingly, we also used the “sum of logarithms of ranks” (SLR) metric [53] which 

accounts for "early recognition" of actives and which we defined as [54, 55]:  

𝑆𝑆𝑆𝑆𝑅𝑅 =  −�𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐 �
𝑟𝑟𝑙𝑙
𝑁𝑁
�      𝐸𝐸𝐸𝐸. (4)

𝑏𝑏

𝑙𝑙=1

 

where ri is the rank of the ith active among N total compounds, and the negative logarithm 

emphasizes early recognition.  

To further extend the “early recognition” SLR metric to reward for the correct ordering of 

actives by their known IC50’s, assigning greater weight to the more active compounds, we have 

defined a new metric, the “sum of the modified log ranks” (SMLR).  If r = [r1,r2, …., rn] is the 

vector of ranks of the n actives and they are ordered by their inhibition constants, with r1 the most 

active, the SMLR value is calculated:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅 = −  �𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐
𝑖𝑖 + �𝑟𝑟𝑖𝑖
𝑛𝑛+ √𝑁𝑁

𝑏𝑏

𝑙𝑙=1

     𝐸𝐸𝐸𝐸. (5) 

The denominator in the expression requires the addition of the square root of the total number of 

compounds, to ensure the quotient always lies between 0 and 1. Thus, the negative of the log 

produces values of the same polarity. 
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In an ideal situation, all actives will be ranked in the first n positions for an optimal SLR 

value and additionally ranked according to potencies for SMLR. The worst scenario is when all 

the n actives are ranked sequentially from N – n +1 to N (for SLR) and additionally in reverse 

order of potency (for SMLR). This allows us to calculate theoretical “minimum” and “maximum” 

SLR and SMLR values, and normalized SLR and SSLR values according to: 

𝑁𝑁(𝑆𝑆)𝑆𝑆𝑆𝑆𝑅𝑅 =  
(𝑆𝑆)𝑆𝑆𝑆𝑆𝑅𝑅 − (𝑆𝑆)𝑆𝑆𝑆𝑆𝑅𝑅𝑐𝑐𝑙𝑙𝑏𝑏

(𝑆𝑆)𝑆𝑆𝑆𝑆𝑅𝑅𝑐𝑐𝑚𝑚𝑐𝑐 − (𝑆𝑆)𝑆𝑆𝑆𝑆𝑅𝑅𝑐𝑐𝑙𝑙𝑏𝑏
      𝐸𝐸𝐸𝐸. (6) 

The metric values can therefore range from 0 to 1, with 1 being the ideal situation. 

The null distributions of (N)SLR and (N)SMLR were obtained through a simulation 

procedure. Under the null hypothesis, ranks of active molecules are the result of random 

assignment across all possible ranks.  The empirical random ranking distributions were simulated 

using a bespoke function by repetitively drawing ranks from a uniform distribution over time. 1 

million repetitions has been advocated elsewhere [53], and was applied in this study. Simulations 

were performed using the statistical software program R [56]. The null distributions can be used 

as probability distributions, where the relative positions of the actual values of (N)SLR and 

(N)SMLR on these distributions converts to a probability. Since there were no tied ranks amongst 

the predictions, random drawing of ranks was done without replacement to imitate reality. Where 

there were tied values of experimental IC50’s, the ranking of the ties was determined by using their 

relative predicted ranking. 
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Figure 1. IC50 of 6-bromoindirubin-3’-oxime (4b) in the presence of the PhK holoenzyme 

compared to the catalytic core of the enzyme (PhK-γtrnc).  

 

RESULTS AND DISCUSSION 

Binding Assay Experiments: Although PhK carries its kinase catalytic activity only on its γ 

subunit, other nucleotide-binding sites have been reported on other subunits of the holoenzyme. 

The presence of several sites can be justified by two other nucleotide-dependent activities linked 

to the enzyme: autophosphorylation [57] and  ATPase [58] although no definite relationship has 

yet been detected between the sites and the activities. At least one adenine nucleotide-binding site 

has been reported on each of the large regulatory subunits [59-61]. 

The full set of IC50 results for the 38 indirubins using PhK-holo calculated from dose-

response curves (Figure 1) are shown in Table 1. For comparison, the corresponding IC50 values 

for CDK1/cyclin B, CDK5/p25 and GSK-3α/β inhibition are also shown [18, 20, 62]. 21 of the 38 

inhibitors had IC50’s ≤ 10 µM for PhK-holo inhibition with the best of these having IC50’s ~ 0.2   



13 
 

 

 

a Polychronopoulos et al.[18] b Ribas et al.[20] c Meijer et al.[62] 

 

Table 1. Inhibitory effects of indirubin analogues on PhK-holo where IC50
 values were calculated from the dose-response curves. The standard 

error in all experiments was ≤10%. IC50’s for homologous kinases are shown for comparison [18, 20, 62]. 

                                                                                    
No. Compound X Y Z W R L IC50(μΜ) 

CDK1/ 
cyclin Ba  

CDK5/ 
p25a 

GSK-
3α/βa 

PhK 

1a Indirubin H O H H H H 10.000 10.000 1.000 >50 
1b Indirubin-3’-oxime H NOH H H H H 0.180 0.100 0.022 0.210 
1c Indirubin-3’-acetoxime H NOAc H H H H 1.200 0.700 0.200 0.170 
1d Indirubin-3’-methoxime H NOCH3 H H H H 1.000 0.400 0.150 0.340 
2b 6,6’-dibromoindirubin-3’-oxime Br NOH Br H H H 17.000 1.300 0.120 2.330 
3b 6’-bromoindirubin-3’-oxime H NOH Br H H H 3.000 1.200 0.340 0.290 
4a 6-bromoindirubin Br O H H H H >100 53.0 0.045 >50 
4b 6-bromoindirubin-3’-oxime Br NOH H H H H 0.320 0.083 0.005 0.340 
4c 6-bromoindirubin-3’-acetoxime Br NOAc H H H H 63.000 2.400 0.010 0.330 
5a 6-bromo-N-methylindirubin Br O H H CH3 H >100 >100 >100 >50 
5c 6-bromo-N-methylindirubin-3’-acetoxime Br NOAc H H CH3 H - - - >50 
6a 6-chloroindirubin Cl O H H H H >100 >100 0.140 >50 
6b 6-chloroindirubin-3’-oxime Cl NOH H H H H 0.650 0.100 0.020 0.230 
7b 6-iodoindirubin-3’-oxime I NOH H H H H 1.300 0.300 0.010 0.330 
8a 6-vinylindirubin CH=CH2 O H H H H 4.200 2.400 0.240 >50 
8b 6-vinylindirubin-3’-oxime CH=CH2 NOH H H H H 1.200 0.420 0.060 0.550 
8c 6-vinylindirubin-3’-acetoxime CH=CH2 NOAc H H H H 1.600 0.400 0.065 0.540 
9a 6-fluoroindirubin F O H H H H 1.500 1.000 0.650 >50 
9b 6-fluoroindirubin-3’-oxime F NOH H H H H 0.320 0.150 0.130 0.220 
10a 6-bromo-5-methylindirubin Br O H CH3 H H 30.000 60.000 0.025 >50 
10c 6-bromo-5-methylindirubin-3’-acetoxime Br NOAc H CH3 H H 31.000 30.000 0.007 0.360 
11a 6,5-dichloroindirubin Cl O H Cl H H 45.000 60.000 0.030 >50 
11b 6,5-dichloroindirubin-3’-oxime Cl NOH H Cl H H 0.140 0.060 0.004 0.200 
11c 6,5-dichloroindirubin-3’-acetoxime Cl NOAc H Cl H H 30.000 0.100 0.004 0.820 
12a 6-bromo-5-nitroindirubin Br O H NO2 H H >100 >100 0.100 >50 
12b 6-bromo-5-nitroindirubin-3’-oxime Br NOH H NO2 H H 12.000 0.150 0.007 1.000 
12c 6-bromo-5-nitroindirubin-3’-acetoxime Br NOAc H NO2 H H 11.000 31.000 0.006 1.200 
13a 7-bromoindirubin H O H H H Br >100c >100c >100c >50 
13b 7-bromoindirubin-3’-oxime H NOH H H H Br 22b 33b 32b 1.800 
13c 7-bromoindirubin-3’-acetoxime H NOAc H H H Br >100c >100c >100c 10.00 
13d 7-bromoindirubin-3’-methoxime H NOCH3 H H H Br >100c >100c >100c >50 
14b 6-Methoxindirubin-3’-oxime OCH3 NOH H H H H - - - 0.700 
14c 6-Methoxindirubin-3’-acetoxime OCH3 NOAc H H H H - - - 1.130 
15a 7-carbocylindirubin H O H H H COOH - - - >50 
16a 7-bromo-N-methylindirubin H O H H CH3 Br 100c >100c >100c >50 
16b 7-bromo-N-methylindirubin-3’-oxime H NOH H H CH3 Br >100b >100b >100b >50 
16c 7-bromo-N-methylindirubin-3’-acetoxime H NOAc H H CH3 Br 70c >100c >100c >50 
16d 7-bromo-N-methylindirubin-3’-methoxime H NOCH3 H H CH3 Br >100c >100c >100c >50 
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µM. The inhibition constants of some of the most potent indirubin analogues (1b, 1c, 1d, 4b, 4c) 

were also determined for PhK-γtrnc (Table 2), where the similarity of the IC50 values for both 

PhK-holo and PhK-γtrnc implies that the indirubin analogues target the γ subunit.  

 

Table 2: Potency comparison of some indirubins analogues for both forms of PhK, 

PhK-holo and PhK-γtrnc. The IC50 values were calculated from dose-response 

curves, with the experimental errors all within 10%. 

No. Compound IC50 PhK-holo 

(μM) 

IC50 PhK-γtrnc (μM) 

1b Indirubin-3’-oxime 0.210 0.144 

1c Indirubin-3’-acetoxime 0.170 0.240 

1d Indirubin-3’-methoxime 0.340 0.280 

4b 6-bromoindirubin-3’-oxime 0.340 0.300 

4c 6-bromoindirubin-3’-acetoxime 0.330 0.304 

 

Statistical Analysis of Docking, QM/MM and QM/MM-PBSA Performance: To compare the 

performance of the docking and post-docking calculations to identify actives and correctly rank 

indirubin analogue potencies in the set of 38 compounds, statistical analysis of results was 

performed. For our statistical evaluation, we defined two active sets, each employing a different 

threshold for “activity”. Active Set 1 (21 ligands) was defined as those indirubins with IC50’s ≤ 10 

µM (the remaining 17 ligands had IC50’s > 50 µM), while Active Set 2 (11 ligands) represents the 

most active indirubins with IC50’s of 0.170 – 0.360 µM.  The statistical performance metrics 

employed were hit-rates, ROC plots and the corresponding AU-ROC values (Eq. (3)), normalized 

SLR (NSLR) and SMLR (NSMLR) values. NSLR, as defined in Eq.’s (4) and (6), measures the 

“early recognition” of actives, with the use of the logarithm in Eq. (4) meaning that lower/better 

ranks of actives contribute proportionately more to the sum, but all actives are treated equally 

irrespective of their relative potencies. Our newly defined (N)SMLR is a metric that additionally 
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rewards the correct ordering of actives according to their potencies (Eq.’s (5) and (6)). It does this 

by reducing relative to SLR, the weight of the predicted rank through its square root and taking 

into account the actual rank through addition.  There are many potential metrics which can be 

devised to account for the correct relative ordering amongst actives. SMLR was used since it is 

functionally similar to SLR, and it seems to behave reasonably. To illustrate this, a set of situations 

comparing NSLR and NSMLR values for different hypothetical predicted ranking of actives are 

given in the Supporting Information (Tables S1-S2). 

 

Figure 2. Null distributions for (A) the normalized ‘sum of the log ranks’ (NSLR) and (B) the 

normalized ‘sum of the modified log ranks’ (NSMLR) metrics. These random ranking distributions 

were calculated by replacement considering n = 21 actives among N = 38 compounds (Active Set 

1), n = 11 actives among N = 38 compounds (Active Set 2), and an approximately standard 

situation in virtual screening with n = 10 actives among N = 1000 compounds.  
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Null distributions comparing NSLR and NSMLR statistics derived by random ranking 

simulations considering different number of actives n within a dataset of N compounds are shown 

in Figure 2. Having n = 10 actives within a set of N = 1000 compounds represents a situation 

typical of virtual screening studies and the application of NSLR and NSMLR. However, 

replicating the situation in the current study, a retrospective analysis of a smaller set of compounds 

with a much greater ratio of actives (𝑛𝑛 𝑁𝑁� ), the corresponding distributions for n = 21 and n = 11 

within a set of N = 38 compounds is shown. We can see that the NSMLR distribution is similar to 

that of NSLR, which derives from a gamma distribution (SLR) [53]. With greater 𝑛𝑛 𝑁𝑁�  ratios such 

as for Actives 1 and Actives 2, as expected, there is a higher probability of a prediction matching 

random. This is reflected in the greater spread of the NSLR and NSMLR values in the null 

distributions compared to the case of n = 10 in a set of N = 1000.  However, the distributions allow 

us to produce probabilities (p-values) which reflect the robustness of the predictions and therefore 

entirely validate the statistical significance of the 𝑛𝑛 𝑁𝑁�  ratios used in the current study. Further 

comparisons of the null distributions for the different 𝑛𝑛 𝑁𝑁�  ratios are including in the Supporting 

Information (Figures S1 and S2). AU-ROC has been reported as independent of the ratio of actives 

[63], although this has been questioned and refuted in recent studies [52]. An associated problem 

is that when studies are performed with different ratio of actives, the values cannot be compared 

[52]. Our comparisons, however, are exempt from these problems, with all comparisons between 

values considering the same ratio of actives throughout. 

The statistical performance metrics for the identification and ranking of active compounds 

obtained for the different docking and post-docking methods are displayed in the flowchart of 

Figure 3. Step-wise more theoretically rigorous methods were employed from left to right, where 

generally we can see the expected trend of improvement of statistics. For the most part, Glide-XP 
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(Figure 3, 3.2b) out-performed Glide-SP (3.1).[31] With Glide-XP, the potential to identify actives 

with IC50’s ≤ 10 µM (Active Set 1) within the set of 38 compounds was significant, with a hit rate 

of 71% and an AU-ROC of 0.77. The NSLR values (0.85) reveal that actives were recovered early, 

while the NSMLR value of 0.70 also revealed reasonable ordering of these actives according to 

their relative potencies. As could be expected, using tighter criteria for activity with Active Set 2, 

statistics were somewhat lower (hit rate 55%, AU-ROC 0.73, NSLR 0.61, NSMLR 0.62) but still 

significant; p-values < 0.05 for NSLR and NSMLR were obtained (0.047 and 0.020, respectively).  

 

 

 

 
Figure 3. Statistical performance metrics for the identification and ranking of actives using 

different computational methods. Values are for both Active Set 1 and Active Set 2 (in 

parentheses). The flow-chart reveals the improvement in statistics that can be obtained for docking 

and post-docking methods by enhancing the theoretical foundations of the models (left to right). 

There was an exception, however, in terms of QM-PLD (4.2a) in pathway (A), where the poorer 

statistics render this direction redundant for the ligands studied in this work (potential reasons as 

described in the text). Our main discussion in the text, therefore, follows pathway (B) and in 

particular the QM/MM-PBSA predicted complex geometries and binding free energies (Eq. (2)). 
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While QM-PLD (3.2a) docking employs reparametrized electrostatic potential (ESP) fit 

ligand atomic charges exploiting QM methods, this did not lead to improvement in results over 

Glide-XP.  The statistics for Active Set 2 were in fact the worst of all methods tested. NSLR (0.51) 

and NSMLR (0.50) values were considerably lower, reflected by much larger p-values (~ 0.2). 

Towards unravelling the source of this poor performance, we need to consider that 25 of the 38 

indirubin analogues contain chlorine, bromine or iodine atoms. Through the halogen atom σ-hole 

effect [48, 64, 65], the unshared electrons on the halogen atom X form a region of negative 

electrostatic potential around the central region of the R-X bond, leaving a positive “σ-hole” on 

the outermost tip of the surface on X [64], as shown in Figure 4. Indirubins 9a-9b contain fluorine, 

but fluorine cannot form halogen bonds due to its high electronegativity and the sp hybridization 

of its s valence electrons neutralizing the σ-hole. Atomic centred partial charges commonly applied 

by generic forcefields and docking programs are inadequate for modelling the σ-hole effect; in the 

current study, ESP fit QM-based atomic centred charges proved to be less accurate than the 

empirically derived OPLS-AA charges employed by Glide-XP. Recently, more accurate MM 

models have been proposed [66-69], such as having a δ- charge on the halogen atom and 

representing the induced positive δ+ charge with an extra point (EP) of charge at a distance r* from 

the halogen atom (e.g. its’ atomic radius [67]).  
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Figure 4. Different orientations of the 7-bromoindirubin-3’-oxime (13b) highlighting the 

halogen σ-hole effect for bromine, calculated using QM at the M06-2X/MIDIX level of theory. 

Shown is the electrostatic potential (ESP) mapped onto the electron density surface. Note that 

only the ESP range of -12 – 12 kcal mol-1 is used in the surface plot for a better visual 

demonstration of the σ-hole effect; actual minimum–maximum ESP values were ~-32 – 62 kcal 

mol-1. 

 

The elimination of parametrization issues for the halogen atoms was achieved employing 

QM/MM and QM/MM-PBSA calculations, with the ligands modelled entirely using QM. As could 

be expected based on the above argument, the Glide-XP poses rather than the QM-PLD poses in 

these calculations produced better performance statistics. The discussion therefore continues with 

respect to pathway (B) in Figure 3. Ranking ligand potencies using QM/MM interaction energies 

(ΔEQM/MM; Eq.(1))  achieved statistical values for Active Set 1 of 81% for hit-rate, 0.85, 0.91 and 

0.72 for AU-ROC, NSLR and NSMLR, respectively (Figure 3, 3.3b). Similar improvement in 
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statistics was observed for Active Set 2 compared to Glide-XP. Most significantly, however, 

QM/MM-PBSA ranking of ligands revealed consistently good statistics for both Active Set 1 and 

Active Set 2 (3.3b). This more theoretically advanced model (Eq. (2)) for calculating ligand 

binding free energies (ΔGbind) includes interaction energies ΔEQM/MM, solvation effects modelled 

using PBSA (∆𝐺𝐺𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠), and an estimate of ligand vibrational, rotational and translational (VRT) 

entropy loss (𝑇𝑇∆𝑆𝑆𝑄𝑄𝑄𝑄) using MM with the rigid rotor harmonic oscillator (RRHO) approximation. 

Despite the tight criteria for activity employed with Active Set 2 (≤ 0.360 µM), a hit-rate of 73% 

was obtained, AU-ROC, NSLR and NSMLR values were 0.82, 0.83 and 0.73, respectively. Indeed, 

the p-values for NSLR and NSMLR were negligible (≤ 0.001).  

Structure Activity Relationship Analysis: Breakdown of the thermodynamic contributions to 

binding for the 38 ligands based on the QM/MM-PBSA predictions is shown in Table 3. Although 

the absolute ∆𝐺𝐺𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏 values are too negative, a consequence of the approximations applied and 

inherent in the methods [44, 48, 70], it is the correct ranking of ligand potencies (relative energies) 

that concerns us. The top 10 predicted most potent ligands (∆𝐺𝐺𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏values < -40 kcal/mol) are 

highlighted in Table 3 and the predicted binding of the most potent indirubin-3’-acetoxime (1c) 

ligand shown in Figure 5. Ligands in Table 3 are ordered by experimental potencies (IC50’s) and 

most of the highlighted ligands are close to the top of this table. The QM/MM-PBSA binding 

geometries and energies, excluding “outliers”, forms the basis of our structure activity relationship 

analysis.     
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Figure 5. For the most potent (IC50 = 0.170 µM) indirubin-3’-acetoxime (1c) ligand, (A) the 

predicted binding in the PhK active site as calculated using QM/MM-PBSA and (B) the 

corresponding potential surface (kcal/mol) calculated using PyMol. This represents a “protein 

contact potential” which approximates the potential that would be felt by a point-charge one 

solvent radius from the protein surface, if we ignore solvent screening and only consider nearby 

atoms. The surface shown clearly highlight a triad of negative potential created the Glu110, 

Glu153 and Asp167 residues which is partially occupied by the acetoxime ligand substituent.  

 

 

To allow us consider the significant issue of kinase selectivity, inhibition data for 

CDK1/cyclin B, CDK5/p25 and GSK-3α/β kinases from previous work is also shown in Table 1. 

Although the IC50 values were determined using different assays, in each case the ATP 

concentration used was less than the KM for ATP (70 µM). In any case, we are comparing 

magnitudes of IC50 values through ratios (factors of the differences between potencies), rather than 

the actual values. Inhibition data for 34 of the 38 indirubins is included, allowing for a detailed 

analysis.  
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 Table 3. Quantum Mechanics ⁄ Molecular Mechanics – Poisson–Boltzmann Surface Area (QM ⁄ MM-PBSA) results for estimation of 
binding free energies at the PhK active site. The top 10 predicted ligands are highlighted in bold/italics (∆Gbind < -40 kcal/mol), with 
ligands ordered by their experimental potencies (IC50’s).a 

Ligand  ∆EQM/MM ∆Gsolv T∆SMM ∆Gbind Exp IC50 (µM) 

1c Indirubin-3'-acetoxime -88.0 31.6 -15.9 -40.6 0.17 

11b 6,5-dichloroindirubin-3'-oxime -80.2 44.0 -17.0 -19.2 0.20 

1b Indirubin-3'-oxime -92.3 28.5 -14.9 -48.8 0.21 

9b 6-fluoroindirubin-3'-oxime -94.4 32.4 -15.0 -46.9 0.22 

6b 6-chloroindirubin-3'-oxime -102.1 41.0 -15.7 -45.5 0.23 

3b 6'-bromoindirubin-3'-oxime -95.9 29.5 -15.0 -51.4 0.29 

4c 6-bromoindirubin-3'-acetoxime -88.7 36.2 -16.6 -35.9 0.33 

7b 6-iodoindirubin-3'-oxime -99.6 42.7 -16.3 -40.5 0.33 

1d Indirubin-3'-methoxime -78.8 20.7 -15.6 -42.5 0.34 

4b 6-bromoindirubin-3'-oxime -102.1 42.6 -15.8 -43.7 0.34 

10c 6-bromo-5-methylindirubin-3'-acetoxime -64.0 44.0 -18.1 -1.9 0.36 

8c 6-vinylindirubin-3'-acetoxime -85.9 38.7 -17.7 -29.4 0.54 

8b 6-vinylindirubin-3'-oxime -97.0 45.2 -17.0 -34.7 0.55 

14b 6-methoxindirubin-3'-oxime -87.8 37.9 -16.9 -33.0 0.70 

11c 6,5-dichloroindirubin-3'-acetoxime -65.1 33.7 -17.6 -13.8 0.82 

12b 6-bromo-5-nitroindirubin-3'-oxime -94.0 44.4 -17.0 -32.6 1.00 

14c 6-methoxindirubin-3'-acetoxime -85.8 39.1 -17.7 -29.0 1.13 

12c 6-bromo-5-nitroindirubin-3'-acetoxime -59.5 36.7 -18.9 -3.9 1.20 

13b 7-bromoindirubin-3'-oxime -79.8 37.4 -16.3 -26.1 1.80 

2b 6,6'-dibromoindirubin-3'-oxime -104.7 40.7 -15.8 -48.1 2.33 

13c 7-bromoindirubin-3'-acetoxime -62.2 15.0 -17.2 -30.1 10.00 

1a Indirubin -66.5 14.9 -14.4 -37.2 > 50 

4a 6-bromoindirubin -73.4 21.3 -15.1 -37.0 > 50 

5a 6-bromo-N-methylindirubin -42.5 21.8 -17.6 -3.1 > 50 

5c 6-bromo-N-methylindirubin-3'-acetoxime -44.9 39.8 -19.3 14.3 > 50 

6a 6-chloroindirubin -74.0 20.5 -15.0 -38.5 > 50 

8a 6-vinylindirubin -63.3 19.9 -16.4 -26.9 > 50 

9a 6-fluoroindirubin -70.3 15.3 -14.5 -40.5 > 50 

10a 6-bromo-5-methylindirubin -54.8 24.5 -16.6 -13.6 > 50 

11a 6,5-dichloroindirubin -59.9 26.9 -16.4 -16.6 > 50 

12a 6-bromo-5-nitroindirubin                                                            no pose                                           > 50  

13a 7-bromoindirubin -70.6 35.4 -15.1 -20.1 > 50 

13d 7-bromoindirubin-3'-methoxime -62.8 21.2 -16.2 -25.4 > 50 

15a 7-carbocylindirubin 95.0 -61.7 -15.3 48.5 > 50 

16a 7-bromo-N-methylindirubin -67.6 29.3 -15.2 -23.0 > 50 

16b 7-bromo-N-methylindirubin-3'-oxime -93.0 47.8 -16.7 -28.5 > 50 

16c 7-bromo-N-methylindirubin-3'-acetoxime -30.5 32.4 -18.3 20.2 > 50 

16d 7-bromo-N-methylindirubin-3'-methoxime -47.6 35.8 -18.5 6.6 > 50 
 a Calculated energies are in kcal mol-1. Contributions to ∆Gbind as per Eq. 2. Values are the Glide-XP docking poses used  and represent pathway (B) 

in the flowchart shown in Figure  4. 
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The key PhK-γtrnc catalytic site residues for indirubin binding (MD model of indirubin-

3’-oxime (1b) bound at the ATP-binding site [5]) are shown in Figure 6(A), together with the 

corresponding residues in the crystal structures of indirubin-3’-oxime (1b) bound GSK-3β [29], 

indirubin-3’-oxime (1b) bound CDK5/p25 [27], and indirubin-5-sulphonate bound CDK2/cyclin 

A [25]. Structural alignment of the PhK active site residues with those in CDK2, CDK5 and GSK-

3β are shown in Figure 6(B) as calculated using the program PDBeFold [71]. We note that the 

binding data for indirubins in Table 1 was obtained using CDK1/cyclin B rather than CDK2 for 

practical purposes [18, 20, 62]. However, CDK1 and CDK2 differ by only two amino acids in the 

ATP binding site, and CDK1 inhibitors were found to be equally active for CDK2 [18]. For the 

purposes of the below analysis, therefore, CDK1 and CDK2 will be discussed in the same light.  

All ligands except 6-bromo-5-nitroindirubin-3’-oxime (12b), 7-bromoindirubin-3’-

acetoxime (13c) and 7-bromoindirubin-3’methoxime (13d) are predicted to have the “expected 

binding mode” shown in Scheme 1. For ligands 5a, 5c and 16a-d with a methyl R substituent at 

position 1’ instead of a hydrogen, the expected binding mode was still adopted but with one less 

hydrogen bond; this, however, proved detrimental to indirubin analogue potency in all cases 

(IC50’s > 50 µM) indicating the importance of the hinge region interactions. The relatively weaker 

predicted ∆𝐺𝐺𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏values (> approx. -30 kcal/mol) for these ligands reflect the IC50 results. The 

predicted pose for 6-bromoindirubin-3’-methoxime (12b) was unexpected, with no hinge region 

hydrogen bonds and this was likely an error due to the constraints imposed by the rigid receptor 

docking calculations. The “alternative inverse binding mode” recently reported for the binding of 

indirubins to DYRK kinases was observed for 7-bromoindirubin-3’acetoxime (13c) and 7-

bromoindirubin-3’-methoxime (13d).   
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Figure 6. (A) The key PhK-γtrnc catalytic site residues for indirubin binding and the 

corresponding residues in the GSK-3β [29], CDK2/cyclin A [25] and CDK5/p25 [27] homologous 

kinases with bound indirubins.  Indirubin positions for which substitutions have the potential to 

form interactions with these residue are also listed. For PhK, the MD model of indirubin-3’-oxime 

(1b) bound at the ATP-binding site was used, while for GSK-3β, CDK2/cyclin A and CDK5/p25, 

the solved crystal structures complex with PDB codes with 1Q41, 1E9H and 1UNH were 

employed, respectively. Superimpositions were based on the core scaffold of the indirubins. Hinge 

region residues have been undisplayed for clarity. (B) The sequence/structural alignment of 

catalytic site residues as determined using the program PDBeFold [71]. The residues shown in (A) 

are highlighted in red boxes. 

 

It is apparent from our results that the Y substituent at position 3’ is critical to the inhibitory 

potential of the indirubin analogues.  Indirubins with oxygen as the Y substituent have in each case 
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IC50’s > 50 µM. Our previous computational study attributed the poor activity of indirubin (1a) to 

a lack of interactions (hinge region excepted) in the PhK active site [5]. In agreement with this, 

smaller magnitudes of ∆𝐸𝐸𝑄𝑄𝑄𝑄/𝑄𝑄𝑄𝑄 values (> -75 kcal/mol) for all indirubin analogues with Y = 

oxygen were obtained. Although an oxygen substituent is also less favoured for CDK1/cyclin B, 

CDK5/p25 and GSK-3α/β compared to the other Y substituents, the effect on IC50’s is less 

dramatic, particularly for GSK-3α/β inhibition.   

While a Y = oxygen substituent is ineffective, all of oxime, acetoxime and methoxime 

groups at position 3’ are favourable for PhK inhibition. Indeed, having Y substitutions only in the 

indirubin scaffold revealed indirubin-3’-oxime (1b; IC50 = 0.210 µM), indirubin-3’-acetoxime (1c; 

IC50 = 0.170 µM) and indirubin-3’-methoxime (1d; IC50 = 0.340 µM) to be among the most potent 

indirubin inhibitors in the set of 38 studied. For indirubin-3’-oxime (1b) and indirubin-3’-

acetoxime (1c), the predicted ∆EQM/MM contributions to binding are strong (~ -90 kcal/mol), with 

the magnitude for indirubin-3’-methoxime (1d) significantly lower (-78.8 kcal/mol). However, 

this is balanced by a lower desolvation cost (∆Gsolv) for 1d with the less polar Y substituent. 

While a Y acetoxime group is less favoured by the CDKs and GSK-3α/β compared to a 

favoured oxime substituent, acetoxime is in fact slightly favoured over oxime for PhK inhibition.  

1c was the most potent indirubin for PhK inhibition identified in this work and its predicted binding 

is shown in Figure 5. The acetoxime (-NOAc) methyl group partially occupies a space of negative 

ESP created by Glu153 O, and the Glu110 and Asp167 sidechain carboxylates. Rational inhibitor 

design would indicate that this pocket can be exploited to increase ligand potency, assuming that 

the desolvation energy cost does not out-weigh the enthalpy gains from any extra contacts formed 

[44]. In terms of kinase selectivity, we note that the corresponding aligned “e” residue (Figure 

6(A)) to the PhK Glu110 from the triad is Asp for CDK2 and CDK5, and Thr in the case of GSK-
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3β. Comparing the superimpositions in Figure 5(A), the closer contacts with the PhK Glu110 

sidechain identifies this residue as a potential means to enhance selectivity.  

Of particular significance, we have unravelled the indirubin 6’ position (Z substitution) as 

a means of directing selectivity towards PhK. While the PhK inhibitory potential of indirubin-3’-

oxime (1b; IC50 = 0.210 µM) is relatively unaffected by the introduction of a Br substituent at 6’ 

with 6’-bromoindirubin-3’-oxime (3b, IC50 = 0.290 µM), the corresponding halogen substitution 

decreases the inhibitory potency for CDK1/cyclin B, CDK5/p25 and GSK-3α/β by a factor of 12-

17. In this regard, the influence of the superimposed “f” residues Asp113 (PhK), Arg141 (GSK-

3β), Lys89 (CDK2) and Lys89 (CDK5) is revealed as crucial. In the case of GSK-3β, CDK2 and 

CDK5, the residues are positively charged and directed towards the 6’ indirubin position, so that 

repulsive interactions with the positive σ-hole on the 7-Br atom are the likely source of the 

decreased potency of 3b. On the contrary, the corresponding residue in PhK is the negatively 

charged Asp167 sidechain which can be exploited in further studies.  

Considering halogen substitutions at position 5, we can consider 11a-11c, but for which 

there are also substitutions at position 6. Comparing 6,5-dichloroindirubin-3’-oxime (11b) with 6-

chloroindirubin-3’-oxime (6b), a Cl substitution at position 5 is favored by CDK1/cyclin B, 

CDK5/p25 and GSK-3α/β by factors of 2-5, but only marginally in the case of PhK (IC50 = 0.200 

µM versus 0.230 µM). Only one halogen (Cl) at position 5 was explored in this study. However, 

through halogen bonding fine-tuning [64, 65, 72, 73] at position 5, interactions with the PhK 

Asp167 sidechain carboxylate (Figure 6(A)) can potentially be optimized. The corresponding 

aligned “h” residues (Figure 6(A)) in the other kinases are either also Asp or Asn (CDK5), but 

these adopt different conformations and distances from the indirubins in the actives sites. Neither 
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a 5-Me (10c) or 5-NO2 (12b-c), substitution is favorable for PhK inhibition compared to their 

parent 5-unsubstituted compounds.   

For the 6-position (X) of indirubin, halogen substitution with Cl, Br and I atoms is 

particularly favored for GSK-3α/β inhibition, but not with fluorine. The Br substitution in 6-

bromoindirubin-3’-oxime (4b) is most favoured (IC50 = 0.005 µM) and 4b is a highly 

potent/specific inhibitor of GSK-3α/β [18, 19]. In the case of the other kinases (PhK, CDK1/cyclin 

B and CDK5/p25), 6-halogen substitutions lead to decreased potencies, although the effect is not 

dramatic.  For PhK inhibition, bulkier 6-halogen substitutions of indirubin-3’-oxime does decrease 

potency (H (3b) < F (9b) < Cl (6b) < Br (4b) ~ I (7b)), but not by an appreciable amount (IC50’s 

= 0.210 – 0.340 µM). The QM/MM-PBSA calculations (∆𝐺𝐺𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏values; Table 4) reproduce this 

trend exactly, highlighting the potential of this method to correctly predict favorable halogen 

substitutions of the indirubin scaffold. The breakdown of the energetics revealed more favorable 

interactions of the bulkier halogens through ∆𝐸𝐸𝑄𝑄𝑄𝑄/𝑄𝑄𝑄𝑄 (~-100 kcal/mol for Cl, Br and I 

substitutions compared to -92.3 and -94.4 kcal/mol for H and F, respectively), but ∆𝐺𝐺𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏 suffers 

overall due to greater ∆𝐺𝐺𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠 desolvation costs (~40 kcal/mol for Cl, Br and I substitutions 

compared to ~30 kcal/mol for H and F).  The strong preference of GSK-3α/β inhibition towards 6-

halogen substitution, however, may lead to selectivity issues for PhK inhibition.  

Finally, a significant finding came from our analysis of position 7 (L) substitutions. While 

a 7-Br substitution decreases the potency of PhK inhibition, the effect is only minor compared to 

the negative effects on CDK1/cyclin B, CDK5/p25 and GSK-3α/β inhibition. 7-bromoindirubin-

3’-acetoxime (13c) has an IC50 of 10 µM for PhK inhibition, but is inactive (> 100 µM) for the 

other kinases. Meanwhile, 7-bromoindirubin-3’-oxime (13b) has been revealed as important anti-

tumour agent triggering the activation of non-apoptotic cell death, although the exact mechanism 
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has yet to be determined [20, 62]. Interesting, therefore, 13b exhibits an IC50 of 1.8 µM with PhK, 

a factor of 12-18 times more potent than with CDK1/cyclin B (IC50 = 22 µM),  CDK5/p25 (IC50 = 

33 µM) and GSK-3α/β (IC50 = 32 µM).  Indeed, a weak and gradually decreasing inhibition of 

CDK1, CDK5 and GSK-3α/β has been reported with different 7-halogeno-indirubin-3’-oximes 

when the size of the 7-atom substitution was increased [62]. This is suggestive of steric hindrance 

with the “c” aligned residues (Figure 6(A)). The residue of significance is a leucine (Leu132) in 

the case of GSK-3α/β, with the IC50 of indirubin-3’-oxime (3b) decreasing by a factor of almost 

1500 from 0.022 µM to 32 µM for 7-bromoindirubin-3’-oxime (13b). For PhK, CDK2 and CDK5, 

the corresponding residue is phenylalanine. Analysis of the distances in the CDK2 and CDK5 PDB 

structures used in Fig. 5(A) reveal that the 7-H indirubin substituent is orientated towards the 

sidechain –CH2- and phenyl (C1) atoms at a distance of ~ 2.5 Å. In the PhK model, these distances 

are > 3.0 Å  (3.0 – 3.2 Å). 7-substitution with a bulkier halogen, therefore, appears to be more 

acceptable in the case of PhK, consistent with the IC50 results. 

  

CONCLUSION 

38 indirubin analogues have been investigated as inhibitors of the hexadecameric PhK enzyme. 

Through enzymatic inhibition experiments with both PhK-holo and PhK-γtrnc, binding at the γ-

subunit is supported, while our computational analysis revealed favorable interactions of the 

indirubins at the ATP binding site. The most active indirubins had IC50’s of 0.170 – 0.360 µM. 

Indirubin-3’-acetoxime (1c) was the most potent, with the 3’-acetoxime substituent more 

favourable for PhK inhibition compared to the other kinases. We have identified a catalytic site 

cavity formed by a triad of negatively charged residues (Glu110, Glu153 and Asp167) which can 

potentially be targeted with further 3’ (Y group) modifications. While alchemical molecular 
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dynamics (or Monte Carlo) free energy simulations represent the most accurate method for 

calculating binding free energies, they are time-consuming and also limited in terms of forcefield 

accuracy.[74, 75] QM/MM based free energy perturbation (FEP) methods have also recently been 

developed.[75] Here, a computational protocol (exploiting diverse docking poses) leading to 

QM/MM-PBSA binding free energy predictions in good agreement with IC50 binding data was 

derived for the set of 38 compounds. As the majority of the ligands studied were halogenated, a 

QM description of their σ-hole effects was necessary to achieve better agreement with experiment, 

where we have defined a new statistical metric ((N)MSLR) to evaluate computational 

performance. The predictive power of our QM/MM-PBSA model, however, can only be truly 

validated through independent tests, for example, in lead optimization efforts.  In this respect, 

substitutions at indirubin 6’(Z) and 7(L) positions have been identified as means through which 

more selective PhK inhibition can be achieved. The 7-substituted anti-tumour agent, 7-

bromoindirubin-3’-oxime (13b), is revealed as a specific inhibitor of PhK; 7-bromoindirubin-3’-

acetoxime (13c) as a particularly specific inhibitor. Alternatively, 6’-indirubin substituents have 

the potential to exploit space close to the negatively charged Asp113 PhK residue, with the aligned 

residues in the other kinases all having positively charged sidechains. It should be highlighted that 

apart from 13b and 13c, the specificity for PhK inhibition over the other kinases is not present for 

the indirubins studied. Greater specificity is observed, in general, for GSK-3α/β inhibition. For 

some of the most potent PhK inhibitors, for example 1c and 3b, IC50’s are similar for PhK-holo 

and GSK-3α/β inhibition. However, the potential for more selective PhK inhibition exists through 

novel 6’(Z), 7(L) and 3’(Y) substitutions. Exploring kinase structural differences to improve 

selectivity is crucial in kinase inhibitor design. Structure based inhibitor design efforts targeting 

PhK are to date limited [5].  Recent findings highlight even more the need for new studies on 
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PhK.[6] Through this work, valuable information and methodologies, not limited to indirubins,  

have been unraveled to direct further rational design of potent and specific PhK inhibitors. 
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APPENDIX A. SUPPLEMENTARY DATA 

Further comparisons regarding the new SMLR statistical metric are given in the Supporting 

Information.  

 

ABBREVIATIONS 

AU-ROC, area under receiver operator characteristic; DFT, density functional theory; MD, 

molecular dynamics; NSLR, normalized sum of the logarithm of  ranks; NSMLR, normalized sum 

of the modified logarithm of ranks; PhK, phosphorylase kinase; QM/MM, quantum 

mechanics/molecular mechanics; QM/MM-PBSA, quantum mechanics/molecular mechanics-

Poisson Boltzmann surface area; QM-PLD, quantum mechanics-polarized ligand docking; ROC, 

receiver operator characteristic; SAR, structure activity relationship; SLR, sum of the logarithm of 

ranks; SMLR, sum of the modified logarithm of ranks; T2D, type 2 diabetes. 
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